Results of the 2024 CQ World Wide WPX SSB Contest

By Bud Trench, AA3B director@cqwpx.com

"I always forget how much fun this contest is, until I get started" - NT5TM

"I wasn't sure if I was up for a long SSB contest, but this was WAY more fun than I expected" - N7VM

"Fantastic conditions on Saturday but utterly dire on Sunday afternoon!" – GM5G

As GM5G (and many others) noted, conditions on most of Day 1 of the 2024 CQ WPX SSB contest were incredible with outstanding productivity on 40M through 10M, but alas, the Sun had other plans. The culprit was a long duration M9.4 flare erupting from 21:01 to 22:15 UTC on 30 March 2024. Oh, what could have been...

Despite the flare, records tumbled during the 2024 CQ WPX SSB contest! New highs were achieved for the number of logs received, quantity of participants, and total QSOs reported. Further, there was an overhaul of the record score tables resulting from four new World and 18 new continental records. These milestones were achieved despite the conflict with the Easter holiday and lack of cooperation by the Sun on Day 2.

Over 8,200 logs were received, surpassing the previous peak set in 2023. As shown in Figure 1, there was an increase of more than 500 logs and 200 operators as compared to last year. So, why did this growth occur? First, CQ WPX SSB was a qualifying event for WRTC UK 2026 so those chasing qualifying points were highly motivated to go all out. Second, the expectation of improving conditions stimulated interest. The Easter holiday also had an impact as some ops who normally participate on multi-operator teams stayed home to be with family; these ops then submitted logs in single-operator categories.

Over 2.8 million QSOs were confirmed in logs received from 165 DXCC entities. Ten meters was the most productive band accounting for 30% of all QSOs. European logs contained nearly half of all QSOs processed.

			Conti	inent				
Metric	AF	AS	EU	NA	OC	SA	ALL	2023
Logs	58	1,124	3,683	2,334	575	473	8,247	7,735
Operators	75	1,389	4,250	2,503	661	559	9,437	9,227
DXCC	17	35	58	26	12	17	165	166
Prefixes	30	307	905	573	129	144	2,088	2,008
		Reported Q	SOs By Ban	d (Post L	og Checkin	g)		
160M	83	142	13,386	772	18	5	14,406	17,679
80M	949	2,628	120,831	12,513	460	205	137,586	155,061
40M	4,541	21,922	239,987	106,698	21,503	7,951	402,602	396,024
20M	12,112	49,985	378,016	191,558	18,452	20,420	670,543	576,804
15M	12,942	102,379	309,819	236,869	29,008	39,085	730,102	660,199
10M	19,729	146,343	289,014	264,805	32,523	121,746	874,160	697,384
A11	50,356	323,399	1,351,053	813,215	101,964	189,412	2,829,399	2,503,151
			Average P	roductivt	у			
QS0s/Log	868	288	367	348	177	400	343	324
QS0s/0pr	671	233	318	325	154	339	300	271

Figure 1. 2024 Activity Level Summary by Continent

Single Operator Accolades

Single operator entries grew by 8% as compared to 2023, and Figure 2 shows the breakdown of Single Operator category selections by continent. Low Power is clearly the category of choice and saw a participation growth of 11% compared to last year. The most popular single band selection was 10M likely due to band conditions.

			Cont	inent			Average	per Entry		
2024	45	AC	EU	NA	ос	CA.	A11	Op Time	Score	A11
Category	AF	AS	EU	NA	6	SA	AII	(Hours)	Reduction	2023
Single Op High Power Entries										
All Band	12	199	706	718	83	52	1,770	13	8%	1,694
Single Band	3	127	304	122	45	44	645	12	9%	611
		5	Single	Op Lov	v Powe	r Entr	ies			
All Band	19	359	1,570	1,066	203	137	3,354	10	9%	3,009
Single Band	14	272	528	235	182	179	1,410	8	13%	1,332
				QRP I	ntrie	s				
All Band	0	16	80	26	14	6	142	10	12%	132
Single Band	0	48	93	22	22	17	202	7	13%	186

Figure 2 Single Operator Participants by Continent

A study of Figure 3, showing operating times by power levels for the Single Op All Band categories, reveals that about 60% of the players exited after 12 hours and 90% by 24 hours. There were 126 All Banders that lasted the full 36 hours along with 9 Single Banders. Overall, average operating times were on par with last year for most single operator categories.

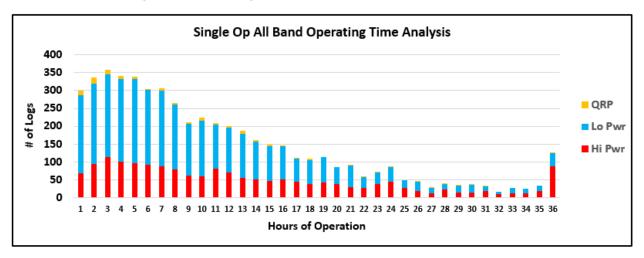


Figure 3 Single Op All Band Operating Time Histogram

Congratulations to PJ4K (N6KT) who returned to the winner's circle again in the Single Op High Power (HP) category after coming in second last year. The runner-up was 8P5A (W2SC); Tom has placed first or second fourteen times since 2006! The online scoreboard showed a tight race between CQ7X (CT1ILT) and E7DX (E77DX) for a new European HP record that was too close to call at the closing bell. CQ7X had more QSOs but E7DX had more multipliers; the final determination boiled down to log checking with CQ7X taking the European record and third place overall. Other incredible Single Op HP achievements include the new USA record earned by WU2X (N5DX), and ND7K (N6MJ) setting new USA benchmarks for both QSOs and multipliers.

RA3CO can add a first place finish in Single Operator Low Power (LP) category to his growing list of accomplishments from PZ5DX. Second place went to perennial Caribbean competitor NP4Z using callsign WP4X. ES7A (ES7GM) and 4X7M (4Z4AK) both set new continental LP records. AC1U (N1UR) was the top USA LP competitor for the second year in a row. ES6RW has been a top 10 contender in the Single Operator QRP category since 2018 and this was the year that he made it to the top spot.

2024 CQ Contest Hall of Fame inductee PT5J (PP5JR) set a new world record in the Single Op 10M HP category; this was his second consecutive win. P43A on 15M, ED5R (EA5Z) on 40M and 4L5O on 80M also won their HP single band categories for this year for the second time in a row. LY0UKR (LY5M) had the top HP score on top band; this was his third win. Another single-band world record was broken by FY5FY – LP on 15M. PF00T (PA2TMS) achieved his sixth first place LP finish on 80M. Finally, both OL4W and HA1TI notched their second consecutive QRP single-band victories on 80M and 160M respectively.

Roberto, TI2RF - #1 in the World, Single Operator, QRP, 10M

Overlay Ovations

The Single Operator Tribander – Wires (TB-Wires) Overlay is for participants with antennas that meet the following requirements: a single feedline for the single antenna used on 20M / 15M / 10M and single element antennas for 160M, 80M and 40M. Separate receive antennas are not permitted. Participation was up by 24% from 2023. CT3KN was the TB-Wires Overlay HP winner for the third year in a row, followed by 9A2M. The TB-Wires LP winner was the contest expedition by PJ5/SP9FIH, followed by UZ7C (UT9CZ) who also set a new European record.

The Classic Overlay is for Single Operators using one radio, without QSO finding assistance, and their score is based on the first 24 hours of on-times. This was the most popular Overlay in 2024, as shown in Figure 4, with an increase of 22% from last year. There were 61 Classic Overlay ops who made it to the 24-hour operating time limit. Congratulations to P49Y (AE6Y) on setting a new World record for the HP Classic Overlay. Second place, and a new North American HP record, was achieved by VE3EJ. The top spots in the LP Classic Overlay were taken by KR5X (K1BX) and TO1Q (F1ULQ). Also, KH6CJJ captured a new LP Classic Overlay record for Oceania.

The Rookie Overlay is intended to attract new contestants licensed for three years or less. The Rookie Overlay saw a growth of 15% as compared to 2023. Of the 347 Rookies this year, 77 were in their final year of eligibility, 126 in Year 2, and 144 in Year 1. HA6KG in his second CQ WPX SSB outing achieved the top score in the HP Rookie Overlay, and first-time entrant AC1OC came in second. The highest scores in the LP Rookie Overlay were both generated by first time entrants HZ1MW and AC1OC.

The Youth Overlay targets operators aged twenty-five or younger. There were 109 Youth Overlay participants, which is up by a whopping 58% from last year, ranging in age from 9 to 25 with an average of 19. HP Youth Overlay continental records, and first and second places overall, were achieved by ES9C (YL3JA) and RA9P and their scores were very close. A new world record was set by BD4VGZ in the Youth LP Overlay and LY7J in second place broke the European record.

			Cont	inent				Average	per Entry	
2024 Category	AF	AS	EU	NA	ос	SA	A11	Op Time (Hours)	Score Reduction	A11 2023
			High	Power	Overlay	Entrie	s			
TB-Wires	2	33	126	115	10	7	293	14	7%	251
Classic	0	28	94	59	14	11	206	12	8%	171
Rookie	0	1	21	10	2	0	34	14	12%	36
Youth	0	5	11	3	1	0	20	14	9%	11
		Low P	ower Ov	erlay	Entries	(Inclu	des QRF	P)		
TB-Wires	2	53	249	157	23	24	508	11	7%	395
Classic	5	88	366	156	55	40	710	9	12%	577
Rookie	2	66	137	72	17	19	313	9	14%	267
Youth	0	23	45	15	6	0	89	7	10%	58

Figure 4. Single Op Overlay Participation Summary

Multi-Op Celebrations

Figure 5 shows the breakdown of Multi-Op participation by continent. Overall, there were 331 multi-operator stations staffed by 1,521 operators. This is down by 57 stations and 359 operators from 2023, likely due to operators preferring to be at home for the Easter holiday.

			Cont	inent				Average per Ent		
2024 Category	AF	AS	EU	NA	ос	SA	A11	Op Time (Hours)	Score Reduction	
Multi-Single HP	2	25	69	25	6	13	140	30	11%	
Multi-Single LP	1	29	42	14	8	6	100	20	10%	
Multi-Two	1	8	25	12	1	3	50	33	10%	
Multi-Multi	1	5	12	7	1	0	26	33	10%	
Multi-Distributed	0	1	7	3	3	1	15	25	9%	

A11 2023
156
114
73
29
16

Figure 5. Multi-Operator Participation Summary

The highest score this decade in the Multi-Single High Power (MSH) category was achieved by D4C. V47T reset the MSH North American record and took second place overall. WP3C established a North American record while also achieving the second highest score ever in Multi-Single Low Power (MSL) category. The second highest MSL score in 2024 belongs to C49C who also set a record for Asia. P33W, K1LZ and RU1A all broke continental records and took first, second and third place respectively in the Multi-Two category. CN3A repeated as the Multi-Multi winner, followed by M6T; this was M6T's first ever Multi-Multi operation. The Multi-Distributed leaders were OG66X and KR7D; sixth place finishers 9M6J set a record for Oceania.

My indoctrination into serious contesting resulted from operating at the large Multi-Multi stations in the early 1980s and the comments from multi-operator stations reminded me of the important roles they play in recruiting and training new operators. Examples include: five first time operators at S50E, all in their second year of college; the S750CST roster included two operators who received their licenses just weeks before the contest; TM4Y was operated by "youngsters from all around Europe average age 18 to 25", and C49C was a mixture of experienced and your ops. Finally, there was a five year old operator at UP9L!

The multi-operator comments also demonstrated the pervasiveness of remote operations. Note that the record-breaking efforts by K1LZ and WP3C were primarily achieved using remote operators. Also, PJ2T relied on six (of eight) remote operators for the first time.

The M2 Team at SZ1A (left to right): DD2CW SV8LMQ SV1SYM SV1DPI SV1PMQ ON3UN SV1DKD SV1UK SV1JG SV1FRQ SV1CQM SV1GE SV1CQG SV1CIB

Youth Operators at S50E, Multi-Single High Power

Optimizing Rate, QSO Points and Multipliers

Developing a winning operating strategy for WPX requires consideration of the tradeoffs between QSO rate, QSO point production, and multiplier capture. This is like the adage – you can have it fast, cheap, or good; pick any two. The analogy for CQ WPX is pick a band and operating technique (running vs. search and pounce) to maximize rate, QSO points or multipliers; pick any two. Figure 6 identifies the stations that have figured this out.

The highest QSO points / QSO ratio was 3.50 achieved by CN3A followed by 3.39 produced by the NH7T. These stations benefitted from large numbers of QSOs with stations on other continents. A highlight is the high ratios achieved by WU2X (N5DX) and CG3T (VE3DZ) which were driven by strong performances on 40M and emphasis on QSOs outside of North America.

Log checking identified 2,843 multipliers and 70% of them were captured by CN3A, followed 67% at P33W. E7DX was the multiplier leader among single operators at 54%, followed by PT5J (PP5JR) at 52%. Note that PT5J (PP5JR) was only on 10M!

			Highes	t QSO	Points/	QSO b	y Statio	ns Op	perating	36 or	· More H	ours		
Category	Africa Asia		a	Europe		N. America		USA		Oceania		S. Ame	erica	
Single Op AB HP	-	-	UN9L	3.33	DF9XV	2.91	CG3T	2.97	WU2X	2.97	YE9BJM	2.98	РЈ4К	3.26
Single Op AB LP	-	-	4X7M	3.06	OL5Y	2.48	KQ1F	2.87	KQ1F	2.87	-	-	PZ5DX	3.26
Single Op AB QRP	-	•	-	-	IZ3NVR	2.11	-	-	-	-	-	-	-	-
Single Op SB HP	-	•	BD7MM	2.31	YT1A	3.12	-	-	-	-	-	-	PT5J	2.79
Single Op SB LP	-	١	-	-	EA2EJO	1.55	-	-	-	-	-	-	FY5FY	2.96
Multi-Single HP	D4C	3.25	4Z7Z	3.18	EI7M	2.73	V47T	2.73	KZ1W	2.73	VK4A	2.92	PJ2T	3.19
Multi-Single LP	-	·	C49C	3.26	DC4A	2.38	WP3C	2.32	WF4DX	2.32	DX3H	2.62	CB1C	2.58
Multi-Two	-	-	P33W	3.20	DR4A	2.62	K1LZ	2.80	K1LZ	2.80	-	-	LP1H	2.8
Multi-Multi	CN3A	3.50	-	-	M6T	2.55	WG3J	2.25	WG3J	2.25	NH7T	3.39	-	-
Multi-Distributed	_		_	_	OR3A	2 21	KR7D	2 21	KR7D	2.31	_	_	_	_
Marci-Distributed														
	Н	ighes	t Mults	Worke	ed/Total	Mult	s (%) fo	r Sta	tions Op	erati	ng 36 or	More	Hours	
Category	H Afri	ighes	t Mults Asi	Worke	ed/Total Euro	Mult:	N. Ame	r Sta rica	tions Op USA	erati	ng 36 or Ocear	More	Hours S. Ame	erica
Category Single Op AB HP	Н	ighes	t Mults Asi UN9L	Worke	ed/Total Euro E7DX	Mult:	N. Ame 8P5A	r Sta rica 49%	tions Op USA ND7K	erati 49%	ng 36 or	More	S. Ame	erica 50%
Category Single Op AB HP Single Op AB LP	Afric	ighes	t Mults Asi	Worke a 48% 37%	EURO E7DX ES7A	Mult: pe 54% 46%	N. Ame	r Sta rica 49% 36%	tions Op USA	erati	ng 36 or Ocear	More	Hours S. Ame	50% 45%
Category Single Op AB HP Single Op AB LP Single Op AB QRP	Afric	ighes	t Mults Asi UN9L 4X7M	Worke 48% 37%	EURO E7DX ES7A ES6RW	Mult: pe 54% 46% 21%	N. Ame 8P5A	r Sta rica 49%	tions Op USA ND7K	erati 49%	ng 36 or Ocean VK1A	More	Hours S. Ame PJ4K PZ5DX	50% 45%
Category Single Op AB HP Single Op AB LP Single Op AB QRP Single Op SB HP	Afric	ighes	t Mults Asi UN9L	Worke 48% 37% - 33%	EVANO EVANO EVANO ESTA ESGRW HGSE	Mult: pe 54% 46% 21% 43%	N. Ame 8P5A	r Sta rica 49% 36%	tions Op USA ND7K AC1U	erati 49%	ng 36 or Ocear VK1A -	More 39%	S. Ame PJ4K PZ5DX - PT5J	50% 45% - 52%
Category Single Op AB HP Single Op AB LP Single Op AB QRP Single Op SB HP Single Op SB LP	Afrid	ighes	t Mults Asi UN9L 4X7M - BD7MM	48% 37% - 33%	Ed/Total Euro E7DX ES7A ES6RW HG5E UT3EV	Mult: pe 54% 46% 21% 43% 25%	N. Ame 8P5A WP4X	r Starrica 49% 36%	ND7K AC1U -	49% 36% - -	ng 36 or Ocean VK1A - -	More 39% - -	PJ4K PZ5DX - PT5J FY5FY	50% 45% - 52% 37%
Category Single Op AB HP Single Op AB LP Single Op AB QRP Single Op SB HP Single Op SB LP Multi-Single HP	Afric	ighes	t Mults Asi UN9L 4X7M - BD7MM - R090	Works 48% 37% - 33% - 48%	Ed/Total Euro E7DX ES7A ES6RW HG5E UT3EV SJ2W	Mults pe 54% 46% 21% 43% 25%	N. Ame 8P5A WP4X - - - V47T	r Starica 49% 36% - - - 52%	ND7K AC1U KT5J	49% 36% - - - 52%	ng 36 or Ocean VK1A VK4A	More 39%	S. Ame PJ4K PZ5DX - PT5J FY5FY PJ2T	50% 45% - 52% 37% 42%
Category Single Op AB HP Single Op AB LP Single Op AB QRP Single Op SB HP Single Op SB LP Multi-Single HP Multi-Single LP	Afrid	ighes	t Mults Asi UN9L 4X7M - BD7MM - R090 C49C	Works 48% 37% - 33% - 48% 36%	EUTO E7DX ES7A ES6RW HG5E UT3EV SJ2W DC4A	Mult: pe 54% 46% 21% 43% 25% 58% 35%	N. Ame 8P5A WP4X - - V47T WP3C	r Starica 49% 36% - - - 52% 34%	ND7K AC1U - KT5J WF4DX	49% 36% - - - 52% 34%	ng 36 or Ocean VK1A - -	More 39% - -	PJ4K PZ5DX - PT5J FY5FY PJ2T CB1C	50% 45% - 52% 37% 42% 24%
Category Single Op AB HP Single Op AB LP Single Op AB QRP Single Op SB HP Single Op SB LP Multi-Single HP Multi-Single LP Multi-Two	H Afrid D4C	ighes	t Mults Asi UN9L 4X7M - BD7MM - R090	Works 48% 37% - 33% - 48% 36%	EUTO E7DX ES7A ES6RW HG5E UT3EV SJ2W DC4A RU1A	Mult: pe 54% 46% 21% 43% 25% 58% 35% 63%	N. Ame 8P5A WP4X - - V47T WP3C K1LZ	r Starica 49% 36% - - 52% 34% 63%	ND7K AC1U - KT5J WF4DX K1LZ	49% 36% - - 52% 34% 63%	ng 36 or Ocean VK1A VK4A DX3H	39% 39% 13%	S. Ame PJ4K PZ5DX - PT5J FY5FY PJ2T	50% 45% - 52% 37% 42% 24%
Category Single Op AB HP Single Op AB LP Single Op AB QRP Single Op SB HP Single Op SB LP Multi-Single HP Multi-Single LP Multi-Two Multi-Multi	Afric - - - - - D4C	ighes	t Mults Asi UN9L 4X7M - BD7MM - R090 C49C	Works 48% 37% - 33% - 48% 36%	EUTO E7DX ES7A ES6RW HG5E UT3EV SJ2W DC4A	Mult: pe 54% 46% 21% 43% 25% 58% 35% 63%	N. Ame 8P5A WP4X - - V47T WP3C	r Starica 49% 36% - - 52% 34% 63%	ND7K AC1U - KT5J WF4DX	49% 36% - - 52% 34% 63%	ng 36 or Ocean VK1A VK4A	More 39%	PJ4K PZ5DX - PT5J FY5FY PJ2T CB1C	50% 45%

Figure 6. QSO point and Multiplier Capture Performance Benchmarks

"How does my score reductions compare to others?" The average score reductions in this contest were 8.6% for single-op and 10% for multi-op entries. These averages help put into perspective the stellar accuracies achieved by the stations identified in Figure 7.

"How can I improve my accuracy?" The major sources of score reductions are incorrectly copying callsigns or received serial numbers. I looked at the log checking reports (LCRs) for the top five stations that had the longest "Stations Copying <callsign> Incorrectly" lists. A total of 763 stations miscopied these five calls. I noticed that the miscopied calls sometimes occurred in blocks, likely stimulated by a bad spot. I next correlated the miscopied calls with DX Cluster spot data and determined that it was likely that 148 (19%) of the miscopied calls were logged within 20 minutes of a bad spot! J62K was particularly impacted – one third of the ops that miscopied J62K did so due to bad spots. I also studied the LCRs of the five stations with the longest "Stations Copying <callsign> Exchange Incorrectly" list. This was eye opening – of the 1187 miscopied serial numbers, 906 (76%) were caused by an error in only one digit. The moral of the story – investing a few more seconds to verify the calls of spotted stations and received serial numbers will improve your logging accuracy.

Call	QS0s	Call	QS0s	Reduction
Best 10, No Re	duction	Best 10, Sin	gle Op,	>1000 QSOs
W8GNM	331	SP9XCN	1,736	0.7%
N1WRK	321	VE7BC	1,797	1.1%
PA1BX	278	DQ4W (DL1MGB)	1,050	1.4%
SV2HJW	189	DK5DQ	1,910	1.7%
IQOPH	161	PY2UD	1,642	1.8%
DG7NFX	160	OR2F	1,924	1.9%
JN1GFR	155	NTØEE (NØHJZ)	1,922	2.0%
KC1HSE	150	DHØGHU	1,092	2.0%
KØEWS	149	WF9A (LZ4AX)	1,892	2.1%
JK1NJH	140	AC9S	1,134	2.1%

Category	Call	QS0s	Reduction
Best Multi-O	by Categ	ory, >50	00 QSOs
Multi-Single HP	KS9R	1,011	3.0%
Multi-Single LP	WP3C	2,774	4.4%
Multi-2	P33W	12,091	5.1%
Multi-Multi	NH7T	6,749	6.4%
Multi-Distributed	MX4Y	1,750	3.1%
Best Youth	and Rooki	.e, >500	QS0s
Youth	SA6NIA	697	1.6%
Rookie	HA6KG	621	3.7%

Figure 7. Exemplary Log Accuracy

The rate leaders are provided in Figure 8. While no new rate records were established this year, the following stations made it onto the top 20 all-time rates list for their categories: 8P5A (W2SC), ND7K (N6MJ), PZ5DX (RA3CO), LZ73TRC (LZ1YE), D4C, V47T, WP3C, LZ8A, P33W, J62K, K1LZ, CN3A and YT5A. Also, ask WX3B what is like to be "fresh meat." The highlight of his 3 hour operation was hitting a rate of 231 per hour on 20M on Day 2 starting at 1853z.

Call	Rate	Call	Rate	Call	Rate
Single Op High	Power	Single Op Low P	ower	Single Op QRP	
8P5A (W2SC)	292	PZ5DX (RA3CO)	223	LZ73TRC (LZ1YE)	112
ND7K (N6MJ)	274	WP4X (NP4Z)	192	TI2RF	96
CQ7X (CT1ILT)	250	ZF1A (W9KKN)	181	IZ1ANK	79
TI7W (N3KS)	246	IO8W (IZ8EYP)	179	PU2UAF	76
PJ4K (N6KT)	241	XE1CQ	177	Multi-Distribute	ed
WX3B	231	SP7Y	175	0G66X	253
EW5A (EU1A)	230	ZM4T (ZL3I0)	172	KR7D	233
WK5T (N2IC)	229	CN8SG	167	OR3A	181
P49Y (AE6Y)	227	AC1U (N1UR)	167	MX4Y	139
KL5DX (KI6RRN)	220	PJ5/SP9FIH	165	9M8J	123
Classic High F	ower	Classic Low Po	wer	Multi-Single High F	ower
P49Y (AE6Y)	227	KR5X (K1BX)	160	V47T	279
IP2A (IK2QEI)	218	AA10N	160	D4C	279
PX2A (PY2LED)	215	ZC4MK	146	KT5J	244
VE3EJ	213	КН6СЭЭ	138	SJ2W	216
RL4A	205	IQOPH	124	RL3A	216
Rookie High P					
ROOKIE HIGH P	ower	KOOKIE LOW PO	ver	Multi-Single Low P	ower
UD6X	ower 106	HZ1MW	ver 136	Multi-Single Low P WP3C	ower 165
UD6X	106	HZ1MW	136	WP3C	165
UD6X SA3MGL	106 91	HZ1MW VE3RGO	136 96	WP3C LZ8A	165 159
UD6X SA3MGL DB3MI	106 91 84	HZ1MW VE3RGO CA3VAK	136 96 88	WP3C LZ8A VQ5P	165 159 143
UD6X SA3MGL DB3MI OT6P (ON6PL)	106 91 84 81 79	HZ1MW VE3RGO CA3VAK BGØDLA	136 96 88 75 74	WP3C LZ8A VQ5P WA1F	165 159 143 142
UD6X SA3MGL DB3MI OT6P (ON6PL) AC1OC	106 91 84 81 79	HZ1MW VE3RGO CA3VAK BGØDLA VU3FWG	136 96 88 75 74	WP3C LZ8A VQ5P WA1F C49C	165 159 143 142
UD6X SA3MGL DB3MI OT6P (ON6PL) AC1OC Youth High Po	106 91 84 81 79	HZ1MW VE3RGO CA3VAK BGØDLA VU3FWG Youth Low Pow	136 96 88 75 74	WP3C LZ8A VQ5P WA1F C49C Multi-2	165 159 143 142 136
UD6X SA3MGL DB3MI OT6P (ON6PL) AC1OC Youth High Po	106 91 84 81 79 wer 195	HZ1MW VE3RGO CA3VAK BG0DLA VU3FWG Youth Low Pow	136 96 88 75 74 er 114	WP3C LZ8A VQ5P WA1F C49C Multi-2	165 159 143 142 136
UD6X SA3MGL DB3MI OT6P (ON6PL) AC1OC Youth High Po ES9C (YL3JA) RA9P	106 91 84 81 79 wer 195 191	HZ1MW VE3RGO CA3VAK BG0DLA VU3FWG Youth Low Pow LY7J BD4VGZ	136 96 88 75 74 er 114 112	WP3C LZ8A VQ5P WA1F C49C Multi-2 P33W J62K	165 159 143 142 136 434 424
UDGX SA3MGL DB3MI OT6P (ON6PL) AC1OC Youth High Po E59C (YL3JA) RA9P YT0C	106 91 84 81 79 wer 195 191 143	HZ1MW VE3RGO CA3VAK BG0DLA VU3FWG Youth Low Pow LY7J BD4VGZ EP4IRN	136 96 88 75 74 er 114 112 97	WP3C LZ8A VQ5P WA1F C49C Multi-2 P33W J62K K1LZ	165 159 143 142 136 434 424 411
UDGX SA3MGL DB3MI OTGP (ONGPL) AC1OC Youth High Po ES9C (YL3JA) RA9P YTØC SO9I (SQ9ORQ)	106 91 84 81 79 wer 195 191 143 140 121	HZ1MW VE3RGO CA3VAK BG0DLA VU3FWG Youth Low Pow LY7J BD4VGZ EP4IRN 550C (552KJ)	136 96 88 75 74 er 114 112 97 88 79	WP3C LZ8A VQ5P WA1F C49C Multi-2 P33W J62K K1LZ Low Power1H	165 159 143 142 136 434 424 411 374
UDGX SA3MGL DB3MI OTGP (ONGPL) AC1OC Youth High Po ES9C (YL3JA) RA9P YTØC SO9I (SQ9ORQ) YU3MPN	106 91 84 81 79 wer 195 191 143 140 121	HZ1MW VE3RGO CA3VAK BG0DLA VU3FWG Youth Low Pow LY7J BD4VGZ EP4IRN 550C (552KJ) SV2TCB	136 96 88 75 74 er 114 112 97 88 79	WP3C LZ8A VQ5P WA1F C49C Multi-2 P33W J62K K1LZ Low Power1H 9A5Y	165 159 143 142 136 434 424 411 374
UDGX SA3MGL DB3MI OTGP (ONGPL) AC1OC Youth High Po ES9C (YL3JA) RA9P YT0C SO9I (SQ9ORQ) YU3MPN TB/Wires High	106 91 84 81 79 wer 195 191 143 140 121 Power	HZ1MW VE3RGO CA3VAK BG0DLA VU3FWG Youth Low Pow LY7J BD4VGZ EP4IRN 550C (552KJ) SV2TCB TB/Wires Low Pow	136 96 88 75 74 er 114 112 97 88 79 ower	WP3C LZ8A VQ5P WA1F C49C Multi-2 P33W J62K K1LZ Low Power1H 9A5Y Multi-Multi	165 159 143 142 136 434 424 411 374 348
UD6X SA3MGL DB3MI OT6P (ON6PL) AC1OC Youth High Po ES9C (YL3JA) RA9P YT0C SO9I (SQ9ORQ) YU3MPN TB/Wires High EB1DJ	106 91 84 81 79 Wer 195 191 143 140 121 Power 204	HZ1MW VE3RGO CA3VAK BG0DLA VU3FWG Youth Low Pow LY7J BD4VGZ EP4IRN 550C (552KJ) SV2TCB TB/Wires Low Pow SP7Y	136 96 88 75 74 er 114 112 97 88 79 ower 175	WP3C LZ8A VQ5P WA1F C49C Multi-2 P33W J62K K1LZ Low Power1H 9A5Y Multi-Multi CN3A	165 159 143 142 136 434 424 411 374 348
UD6X SA3MGL DB3MI OT6P (ON6PL) AC1OC Youth High Po ES9C (YL3JA) RA9P YT0C SO9I (SQ9ORQ) YU3MPN TB/Wires High EB1DJ CT3KN	106 91 84 81 79 wer 195 191 143 140 121 Power 204 188	HZ1MW VE3RGO CA3VAK BG0DLA VU3FWG Youth Low Pow LY7J BD4VGZ EP4IRN 550C (552KJ) SV2TCB TB/Wires Low Pow SP7Y PJ5/SP9FIH	136 96 88 75 74 er 114 112 97 88 79 ower 175 165	WP3C LZ8A VQ5P WA1F C49C Multi-2 P33W J62K K1LZ Low Power1H 9A5Y Multi-Multi CN3A YT5A	165 159 143 142 136 434 424 411 374 348 551

Figure 8. Peak 60 Minute Rates

Records Tumbled!

Congratulations to the new record holders shown in Figure 9, which includes four new world records and 18 new continental records. The longest standing record to change was in the Single Operator Low Power 15M High Power category from 2000, which is now owned by FY5FY, followed by the Asian Single Operator Low Power All band record from 2007 which went to 4X7M (4Z4AK). Note the "quantum leaps" from the previous records achieved in the Asian Multi-Two (P33W), North American Multi-Two (K1LZ) and North American Multi-Single High Power (V47T) categories.

		New Red	cord	Pre	vious Record	
Category	Region	Call	Score	Call	Score	Year
Single Op High Power 10M	World	PT5J (PP5JR)	19,189,735	PT5J	18,778,994	2023
Single Op Low Power 15M	World	FY5FY	7,298,585	VC3M	5,365,405	2000
Multi-Two	AS	P33W	73,971,841	UP2L	46,044,068	2014
Multi-Single Low Power	AS	C49C	10,259,730	TC7G	4,435,743	2021
Single Op Low Power All Band	AS	4X7M (4Z4AK)	8,551,835	TC3D	8,526,440	2007
Multi-Two	EU	RU1A	38,320,150	ES9UKR	36,746,300	2023
Single Op High Power All Band	EU	CQ7X (CT1ILT)	22,478,463	CQ8X	20,759,765	2014
Single Op Low Power All Band	EU	ES7A (ES7GM)	9,592,404	OM2VL	7,198,514	2015
Multi-Two	NA	K1LZ	46,327,820	WP2Z	34,886,363	2014
Multi-Single High Power	NA	V47T	31,789,908	V47T	24,741,080	2022
Multi-Single Low Power	NA	WP3C	12,281,366	KB3WD	10,457,546	2016
Multi-Distributed	oc	9M8J	1,491,410	4E3X	1,435,548	2021
Single Op High Power All Band	SA	PJ4K (N6KT)	29,119,090	РЈ4К	27,568,088	2023
	Si	ngle Operator	Overlays			
Classic High Power	World	P49Y (AE6Y)	15,326,958	PJ4R	12,614,900	2023
Youth Low Power	World	BD4VGZ	4,487,070	LY7K	1,220,102	2023
Youth High Power	AS	RA9P	12,666,876	BG5VAR	157,215	2023
Tribander - Wires Low Power	EU	UZ7C (UT9CZ)	5,811,680	9A3B	4,651,320	2014
Youth High Power	EU	ES9C (YL3JA)	12,822,720	S09I	6,040,122	2023
Youth Low Power	EU	LY7J	1,552,680	LY7K	1,220,102	2023
Classic High Power	NA	VE3EJ	10,642,560	VE3EJ	7,703,030	2021
Classic Low Power	oc	КН6СЈЈ	1,933,113	КН6СЈЈ	540,940	2023
Youth High Power	OC	YC3CZV	132	-	-	-

Figure 9. New World and Continental Records

Some Log Checking Notes

As discussed previously, there was a record turnout for CQ WPX SSB 2024. Another new record was the percentage of QSOs that were checked against other logs - nearly 2.7 million of the 2.9 million QSOs received (+90%). Approximately 95% of the checked QSOs were correct; 2.5% had incorrect received serial numbers; 1.7% had incorrect received calls, and 0.4% were not found in the other stations log.

Disciplinary actions were rare thanks to the integrity and ethics of most operators. The required actions were primarily in three areas. First, operators are reminded to not exceed their license privileges – this includes transmitting on unauthorized frequency, excessive power, or poor signal quality; please note that SDR records were used in the investigations of some of these cases. Second, self-spotting is not permitted in CQ WPX contests. Third, single operators cannot use assistance in the Classic Overlay.

Another note - QSOs must include valid transmitted and received serial numbers if they are to count, and 0000 is not a valid serial number.

In Closing....

The following is from the CQ Newsroom on 30 April 2024:

"It is with great sadness that we report the passing on April 27 of Richard A. "Dick" Ross, K2MGA. He was 84. Dick was Publisher of CQ magazine since 1979 and was its editor in the 1960s. As President of CQ Communications, Inc., Dick was also publisher of multiple magazine titles, including Popular Communications, CQ VHF, CQ Contest, WorldRadio Online, Communications Quarterly, CB Radio, Electronic Servicing and Technology, Modern Electronics, MicroComputer Journal, and Music and Computer Educator. In addition, Dick oversaw the production and publication of CQ books and calendars, the CQ Video Library and more. In 2010, Dick received the Dayton Hamvention's Special Achievement Award."

K2MGA's support to the CQ WPX contests facilitated their growth and success. I believe that the CQ WPX contests will be an enduring part of his legacy.

In other news, we have learned that CQ Communications has suspended operations. Please be assured that the CQ WPX contests will continue under the stewardship of the World Wide Radio Operators Foundation (WWROF) without disruption.

I enjoyed preparing these results as there were so many incredible performances from around the world. However, I was only able to scratch the surface as there are many more accomplishments to celebrate. Please see https://www.cqwpx.com/index.htm for the full listing of scores, plaques, records, rates, and other contest metrics.

It is my pleasure to acknowledge all the volunteers supporting the 2024 CQ WPX SSB contest. They include: ES5TV, F6BEE, G6NHU, I2WIJ, JK3GAD, K1AR, K1DG, K1EA, K5ZD, KM3T, KR2Q, LA6VQ, LU5DX, OH6LI, OK2FD, PA3AAV, S50A, SV1DPI, UX1AA, VE3TM, W0YK, and Y03JR. My thanks to this amazing team.

In closing, I find myself wondering what would have happened if the Sun had cooperated for the full 48 hours of the CQ WPX 2024 SSB contest. Would we have seen more resets of records from the Cycle 24 peak, and if so, how high? It looks like Cycle 25 has some juice, so block out March 29 and 30, 2025 on your calendars for the next CQ WPX SSB contest. Records will tumble!

Photo Gallery

Stefano, IP2A (IK2QEI) and future contester Francesco, #3 in the Classic – HP Overlay

LY5W Antenna Farm (Forrest?) - #7 in Europe, Single Operator Classic Overlay High Power

Mario, DW2KED - #4 in the Philippines, Single Op, Low Power, 40M

Dennis, 4I1EAY - #1 in Oceania, Single Operator, Low Power, 10M

DU2R, Single Op Low Power, 40M - #2 in the Philippines

Top Scores - WORLD

		MEON	17 126	GE ODD	F 200		
SINGLE OP	_	WF2W CT1AL	17,136 1,596	S59DR D01UKR	5,200 4,437	_	OPERATOR
HIGH PO	OWER	JH9URT	418	YU1SDS	3,555	SI	NGLE-
All Ba				II1R (IW1CBG)	1,980	TRAN	SMITTER
PJ4K (N6KT)	29,119,090	LOW PC		ORP		HIGH	H POWER
8P5A (W2SC) CQ7X (CT1ILT)	26,153,225 22,478,463	All Ba		All Ban	da	D4C	41,515,095
E7DX (E77DX)	22,314,348	PZ5DX (RA3CO) WP4X (NP4Z)	15,247,344 13,456,476	ES6RW ES6RW	1,231,072	V47T EI7M	31,789,908 26,365,912
EW5A (EU1A)	19,340,385	ES7A (ES7GM)	9,592,404	IZ3NVR	576,576	RL3A	25,219,875
UN9L	18,404,937	4X7M (4Z4AK)	8,551,835	VA2IW	413,440	LZ5R	20,369,800
WU2X (N5DX) DROW (DJ5MW)	18,320,673 17,429,952	EC2DX	8,529,953	YBOSSF	347,007	SJ2W	19,788,678
V26K (AA3B)	17,391,768	PY7ZC UN4O	7,158,935 7,058,880	YW6CQ (YV6BXN) GI7JYK (MI5JYK)	341,572 327,049	KT5J 4Z7Z	18,178,416 17,858,280
EA2W	16,783,422	AC1U (N1UR)	7,053,025	W6QU (W8QZA)	225,488	RO90	17,637,492
28 MI	U	PJ5/SP9FIH	6,086,174	PA3EOU	219,248	PJ2T	17,430,379
PT5J (PP5JR)	19,189,735	TM3Z (F4DSK)	5,851,922	LC5P (LA3NGA)	208,848		
V31XX (K4XX)	9,702,195	28 MI	Ήz	IZ4AIF	204,052	_	OPERATOR
KP2B (EB7DX)	9,561,195	PY2EX	5,224,880	28 MHz	4	_	NGLE-
LT3E (LU1DJX) KW7MM	8,495,304 7,467,219	PY2UD	4,167,828	TI2RF	610,093	TRAN	SMITTER
JG3KIV	7,127,503	ZZ5K (PP5RT)	4,083,714	UN4L	509,640	LOW	POWER
P35A (5B4AQN)	6,971,461	LU1DX (LU4DJB) PU2VLW	3,990,168 2,736,643	PU2UAF UX90	430,920 149,568	WP3C	12,281,366
4L2M	6,537,743	VR2T (VR2ZQZ)	2,602,948	PY2BN	138,244	C49C	10,259,730
GM5X (GM4YXI)	5,304,640	TO1Q (F1ULQ)	2,450,144	BH4TQX	133,945	VQ5P WF4DX	10,164,242 5,178,285
S5500	5,109,346	KP4JA (KP3J)	2,399,082	CU4AT	120,474	DC4A	4,748,478
21 MH	Hz	EA8DED (OH2BP) PY2HT	2,282,776 2,211,450	SY1AEA IZ2KPE	97,846 93,617	BD7DT	4,545,780
P43A	12,173,904	FIZHI	2,211,430	IZ5JLF	82,212	ED3T	4,441,630
DF7A (DL2ARD)	9,208,611	21 M	Ήz			LZ8A CB1C	3,711,623 2,182,630
CR6T (CT1ESV)	8,747,924	FY5FY	7,298,585	21 MHz	=	LY2CX	1,592,500
VC2A (VA2WA) OG8M (OH8MCT)	7,539,231 7,534,140	PZ5TW (PY8WW)	6,110,999	HG1S (HA1DAE)	490,980		, ,
IP4M (IK4MGP)	5,540,125	KP4PUA UP7L (UN6LN)	3,701,510 2,806,272	TA2IB JO1NGT	272,238 88,755	MULTI-	OPERATOR
JJ0VNR	4,846,920	FK8GM	2,231,829	J43N	85,064	TWO-TR	ANSMITTER
YTOC	4,420,185	LZ4Z	2,147,250	RN6LGA	37,030	P33W	73,971,841
BD7MM (BA7JA) SN3A	4,210,646 4,110,528	EG3CC (EA3CX)	1,624,428	IZ3KNK	34,848	K1LZ	46,327,820
514521	1,110,320	P43K 4X1VF	1,167,442 1,109,220	GW4W (GW4EVX) HZ1LG	31,725 28,314	RU1A OM7M	38,320,150 35,914,275
14 MF	Hz	N9TGR	1,062,756	JR1NKN	22,250	9A5Y	35,025,603
HG5E (HA1AH)	7,304,140			RK9DO	20,646	J62K	28,579,752
UW1M IT9RBW	5,493,069 5,247,165	14 M		1.4 2077		LP1H	24,710,004
S51YI	4,279,716	5K3L (HK3EA)	1,723,428	14 MHz		YR8D S53M	22,295,460 21,916,560
S52WW	4,025,036	SP7Y IG9ITO	1,513,952 1,387,000	ES2MC LZ73TRC (LZ1YE)	477,750 235,320	HG7T	19,712,376
EH3CC (EA3O)	3,902,673	YU5M	1,216,782	YU1NR	154,284	110 / 1	13,712,373
TI1K	3,833,488	UT3EV	1,209,688	9A1VV	128,547		
K5RX S07E	3,231,887 2,437,218	IU4ICT	664,812	K3TW	118,552	_	OPERATOR
YT4B (YT3AAA)	2,417,558	IZ8EFD N8CWU	522,288 514,290	RA7C IO6R (IK6QRH)	67,116 55,322		RANSMITTER
=		PP2FRS	491,169	UT1PG	25,004	CN3A	99,399,606
7 MH		RZ3Z	402,402	HB9IQB	22,655	M6T YT5A	54,887,536 40,922,335
ED5R (EA5Z) YT1A	8,346,684 7,309,275	7		SN40RVG (SP2UUU)	15,345	DP7D	38,242,816
IP8A (I8QLS)	6,721,324	7 MH		7 MHz		LZ9W	37,978,908
YL7X (YL2LY)	3,800,968	IB2C (IK2AQZ)	566,088 490,857	OK6OK	164,405	NH7T	33,921,272
TM8A (F8DVD)	3,543,867	OR7W	472,059	VE3BFU	21,682	OH5Z	30,124,808
S51CK	3,124,953	EW7B	462,944	DU1SH	11,163	NR60 TM4Y	21,881,649 14,966,226
NP3X (LU8EOT) HA2KMR	3,091,187 1,910,741	CO2JD	440,912	YF7RDM	10,800	NE1C	13,241,371
YPOC (YO3CZW)	1,842,234	DL5GA DL4VAI	429,957 413,292	YT4DX 4L4NW	10,780 4,088		
UC2K (DJ1CW)	1,394,592	HZ1TL	411,500	SQ2HNA	3,526	MULTI-	OPERATOR
3.7 M	W-	HA6PJ	387,720	YD9HJD	2,449	MULTI-D	ISTRIBUTED
4L50	2,350,560	IZ1GQI	316,800	JH3DMQ	1,628	OG66X	12,114,846
IPOA (ISOJHQ/OK		3.7 M	Hz	E25CRF	1,584	KR7D OR3A	11,535,825
	1,614,000	PF00T (PA2TMS)	946,740	3.7 MH	z	MX4Y	6,181,390 2,798,091
S56B	1,586,229	SP2N (SQ2HCW)	377,365	OL4W	24,717	KG5VK	2,375,230
OL4N (OK1DTP) SQ2PHG	1,443,456 1,165,916	II4C (IK4RVG)	364,610	GW8C	24,380	9M8J	1,491,410
TM4W (F4DXW)	1,120,952	OK7R (OK1TNM)	325,832	SQ9MR	23,793	SN6E	1,117,333
IQ9UI (IT9EQO)	1,043,442	IZ4REF OK1AY	259,794 239,440	HB9FWB/P 9A7RA	3,485 288	KT6V F5KAY	833,413 529,592
HA1TJ	998,585	OM5KM	199,717	YO9RYI	154	DX9M	524,275
YU3DKO	973,516	EA3MR	196,833	K3PA	4		, -
SN9B (SQ9OB)	967,497	DL2LBK	184,265	1.8 MH	7		
1.8 M	Hz	SP4AWE	140,293	HA1TI	Z 4,845		
LYOUKR (LY7M)	321,012	1.8 M	Hz	IKOXBX	4,371		
DQ55DIG (DL3BQA		HF7A	98,172	9A2G	2,808		
S56X SQ7CL	208,080 150,060	YROB (YO8PS)	63,407	YP8A (YO8WW)	1,378		
UA7K	86,436	E79D E71T	61,692 52,632	UR5FEO DF1TB	432 108		
K1ZM	25,026	HA8BE	13,612	E70E	84		
YT5T	24,531	RK3E	7,623				

ROOK1	E	CLASS	IC	TRIBANDER	R/WIRES	YOU	TH
HIGH PC	WER	HIGH PO	OWER	HIGH PO	OWER	HIGH E	POWER
HA6KG	656,600	P49Y (AE6Y)	15,326,958	CT3KN	13,334,625	ES9C (YL3JA)	12,822,720
AC10C	399,600	VE3EJ	10,642,560	PA9M	9,616,572	RA9P	12,666,876
DM1KM	372,592	IP2A (IK2QEI)	8,513,615	MM9I (GM0OPS)	8,300,331	SO9I (SQ9ORQ)	4,891,264
OT6P (ON6PL)	369,240	S53MM	6,102,705	ZZ2T (PY2MNL)	7,655,674	YTOC	4,420,185
KN6ZZI	365,298	YT3D	5,522,475	IK3UNA	7,447,966	KD9LSV	2,800,075
UD6X	335,730	NU4E	5,017,524	EA1L	7,063,698	YU3MPN	246,370
DB4REB	321,204	R5AJ	4,989,285	P35A (5B4AQN)	6,971,461	W7MTH	216,460
ER3KAZ (ER3PV)	313,260	YU5A (YU1EW)	4,896,276	DK8ZZ	6,332,995	OE9SEV	126,984
SA3MGL	311,253	WS7X	4,877,300	SG5Z (SM5GMZ)	5,835,552	HA7DR	113,678
F4JVT	297,724	9N7AA	4,361,602	WR9D (KB9UWU)	5,703,600	NI9F	92,988
LOW PO	WER	LOW PO	WER	LOW PO	WER	LOW P	OWER
HZ1MW	1,262,718	KR5X (K1BX)	4,383,743	PJ5/SP9FIH	6,086,174	BD4VGZ	4,487,070
4X5IC	1,075,655	TO1Q (F1ULQ)	2,450,144	UZ7C (UT9CZ)	5,811,680	LY7J	1,552,680
VE3RGO	731,052	ZC4MK	1,686,372	EB8AH (EA8RM)	5,584,659	S50C (S52KJ)	1,440,869
IV3JAK	728,140	KH6CJJ	1,658,007	3V8SS (KF5EYY)	5,496,624	EP4IRN	1,225,561
KFOIDT	706,006	N8II	1,605,150	WF9A (LZ4AX)	4,220,663	SA6NIA	603,900
CA3VAK	654,120	PY2NY	1,472,965	SP9XCN	3,423,298	NC8R	449,328
F4JIK	578,400	LS7X	1,125,640	I080 (IK8UND)	2,632,704	SP3GTP	362,611
9A5AFF	500,400	IQ8BB (IZ8QNS)	1,053,553	UNOLM	2,372,427	HA8TA	359,104
PU1JQY	491,307	AA1ON	996,496	G4GA (G4IRN)	2,224,020	SP6FU	315,104
IN3JHZ	457,024	EW1M	960,680	YL4U (YL1ZF)	2,208,690	BA70LK	206,658