Results of the 2025 CQ World Wide WPX SSB Contest

By Bud Trench, AA3B director@cqwpx.com

"Great Contest, fantastic participation as the WPX assures great fun" - IZ8GUQ

These comments nicely recap the 2025 running of the CQ WPX SSB contest. I am pleased to announce that **participation in the 2025 CQ WPX SSB was the highest ever**. Further, Soapbox and social media content clearly demonstrated participant enthusiasm, and the vibrance of the Radiosport community. The other major theme was the solar conditions - what a roller coaster!

A total of 8,474 logs were received, containing nearly 2.9 million QSOs, and over 10,000 operators were active – all are records. Europe accounted for more than half of the action and nearly one third of the contacts were made on 10 meters, as shown in Figure 1.

			Conti	nent]	
Metric	AF	AS	EU	NA	OC	SA	ALL	2024
Logs	64	1,077	3,952	2,413	494	474	8,474	8,247
Operators	115	1,337	4,867	2,676	642	558	10,195	9,437
DXCC	23	32	60	25	10	18	168	165
Prefixes	40	301	935	580	122	152	2,130	2,088
		Reported (SOs By Ban	d (Post Lo	g Checkin	g)		
160M	115	102	13,887	1,346	9	2	15,461	14,406
80M	2,043	1,408	123,323	16,733	368	194	144,069	137,58
40M	6,422	20,963	225,320	89,851	19,994	7,554	370,104	402,60
20M	18,208	50,167	408,360	172,808	15,888	20,881	686,312	670,54
15M	19,203	98,410	347,855	220,708	25,940	33,617	745,733	730,10
10M	37,711	118,640	318,362	270,645	35,879	130,934	912,171	874,16
A11	83,702	289,690	1,437,107	772,091	98,078	193,182	2,873,850	2,829,39
			Average P	roductivty	/			
QS0s/Log	1,308	269	364	320	199	408	339	324
QSOs/Opr	728	217	295	289	153	346	282	271

Figure 1. 2025 Activity Level Summary by Continent

The consensus was that conditions were lousy on Day 1 and exciting on Day 2 as noted by EI7M and many others. Did you wonder what the sun was up to and why? There was a G2 class geomagnetic solar storm around 2130 UTC on March 26 accompanied by a significant increase in solar wind speed. These solar winds were enhanced by high-speed streams from three large coronal holes in the Sun's southern hemisphere. On March 28, there was a X1.1 flare peaking at 15:21 UTC. The results of these events were unsettled geomagnetic conditions on Day 1 as shown in Figure 2. The fast solar wind speed and density dropped on Day 2 resulting in improved conditions, particularly on 10M.

[&]quot;Thank you all for a wonderful, magical and great CQ WPX SSB" - PD0SOT

[&]quot;All the new and old members did experience a nice contest in a good spirit" - SX5P

[&]quot;Conditions were very disappointing on Saturday, but improved dramatically on Sunday" - EI7M

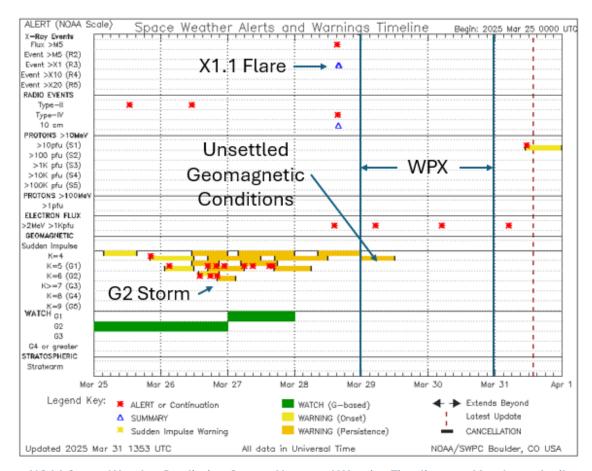


Figure 2. NOAA Space Weather Prediction Center Alerts and Warning Timeline – 25 March to 1 April 2025

Single Operator Deep Dive

So, let us begin a review of the results with a deep dive into the Single Operator categories and Overlays. There were 7,663 Single Operator entries, which are up by 141 as compared to 2024. A breakdown of Single Operator category selections by continent is provided in Figure 3. All Band, and Low Power, were the most popular category choices, and 10 meters was most selected for single band operations.

			Cont	inent				Average	per Entry	
2025 Category	AF	AS	EU	NA	ос	SA	A11	Op Time (Hours)	Score Reduction	A11 2024
			Single	Op Hig	h Powe	r Entri	es			
All Band	15	205	709	743	80	58	1,810	13	8%	1,770
160M	0	1	8	1	0	0	10	12	7%	11
80M	0	0	17	6	0	1	24	13	10%	30
40M	0	15	38	13	9	8	83	11	9%	94
20M	2	16	80	18	5	2	123	13	10%	96
15M	2	26	69	26	8	7	138	15	9%	132
10M	3	56	135	57	16	41	308	12	10%	282
			Singl	e Op Lo	w Power	Entri	es			
All Band	15	348	1,650	1,071	168	105	3,357	10	10%	3,353
160M	0	2	24	0	0	9	26	7	7%	18
80M	0	0	33	4	1	1	39	8	8%	36
40M	1	18	58	12	60	3	152	6	13%	188
20M	1	16	167	60	9	14	267	8	10%	202
15M	3	88	123	42	29	10	295	8	12%	282
10M	13	107	206	145	41	154	666	9	12%	684
				QRP	Entries					
All Band	0	25	81	27	11	8	152	8	11%	142
160M	0	1	4	0	0	0	5	4	4%	7
80M	0	1	11	1	1	9	14	8	7%	7
40M	0	2	11	2	7	2	24	7	10%	16
20M	0	7	26	4	0	0	37	6	14%	40
15M	0	18	23	4	7	1	53	9	12%	49
10M	0	20	33	14	6	7	80	7	14%	83

Figure 3. Single Operator Participants by Continent

Figure 4 shows operating hours by power levels for the Single Operator All Band categories; about 70% of the participants exited after 12 hours and 90% by 24 hours. There were 86 All Banders that went the full 36 hours along with 16 Single Banders. Overall, the average single operator was active for 10.5 hours, which is nearly identical to 2024.

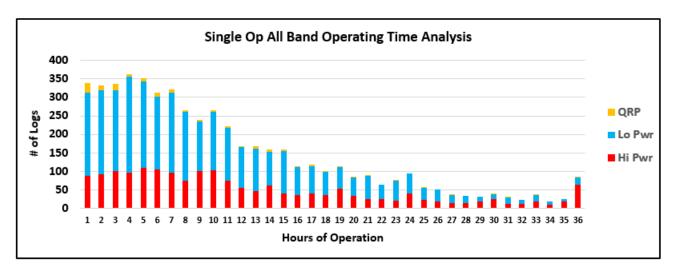


Figure 4. Single Op All Band Operating Time Histogram

Operating from an island with good paths to North America and Europe is one of the most thrilling contesting experiences, and this was certainly the case for CQ WPX SSB in 2025. Seven of the top 10 Single Operator All Band scores came from island operations, including the top three. **D4DX (E77DX) put together a world record crushing operation** on short notice. Second place went to HC8M (LU9ESD) using "comprise antennas" made of wires and bamboo. KQ2M was the USA Single Op winner and surpassed the 4,000 QSO mark for his third time. Braco, Manu and Bob posted fascinating recaps of their operations at 3830scores.com which are available here: **D4DX**, HC8M and KQ2M. The top European Single Op was RK4FD operating RT4F; this was RK4FD's third European win.

P40L (W6LD) dominated Single Op Low Power for his third win of the category. AC1U (N1UR) had the top Single Op Low Power score in the USA, surviving an ice storm on Saturday night. TM18Z (F4DSK) leveraged a unique prefix, and lots of aluminum, to take the top Single Op Low power slot in Europe for the third time. LY9A also achieved his third win and dominated the QRP category. Congratulations to frequent QRP competitor KA8SMA who achieved his first USA victory.

Single band highlights include a new world record in the 80M QRP category by E77Y. PT5J (PP5JR) won the 10M High Power category for the third consecutive and fourth time overall. SP9FIH achieved his best score ever from the Caribbean and won the 10M Low Power category as TO1P. DQ2C (DL2SAX) succeeded in his goal to set a new German 10M QRP record and won the category overall. P43A extended his15M High Power winning streak to three, and PZ5TW (PY8WW) started a winning streak with his second 15M Low Power triumph. HG1S (HA1DAE) won the 15M QRP category for the second year in a row. ED8W (EA1BP) made a last-minute decision to operate 20M High Power resulting in his second win of the category. 2025 was the first Low Power outing by TI1K (TI5CDA), and he won 20M. S51Z just squeaked by IZ1ANK to take the 20M QRP category. IB8A (I8QLS) focused on year of year improvement, leading to his first win of the 40M HP category. This was the initial fulltime effort for Z32TO, and he conquered the 40M Low Power category. IZ4AIF was triumphant in the 40M QRP category – his first QRP single band entry. HA1TJ fought off SQ9Y (IT9RGY) in a close race for the 80M High Power top spot. HG6K (HA6AK) went solo for the first time and took the 80M Low Power prize. LY0UKR (LY7M) won the 160M HP

category for the second consecutive year and fourth time overall. OK4R (OK6RP) operated over 22 hours and won the 160M Low Power category.

Single Operator Overlay Acclamations

The Classic Overlay is for Single Operators using one radio, without QSO finding assistance, and their score is based on the first 24 hours of on-time. This was the most popular Overlay in 2025, as shown in Figure 5, with an increase of 49 entries over last year. There were 74 Classic Overlay ops who made it to the 24-hour operating time limit. CQ3W (DF7EE) broke the High Power Classic Overlay world record and captured his second win. CQ3W also shared an insightful analysis of his contest operation. WK5T (N2IC) extended his North American High Power Classic Overlay winning streak to 3. The Low Power Classic Overlay winner was TO1Q (F1ULQ) using only 10 meters. The High and Low Power Classic Overlay records were both reset in Europe by IO4X and HG0R (HA0NAR) respectively.

			Cont	inent				Average	per Entry	
2025 Overlay	AF	AS	EU	NA	ОС	SA	A11	Op Time (Hours)	Score Reduction	A11 2024
			High	Power (Overlay	Entrie	s			
TB-Wires	1	38	135	124	9	9	316	14	8%	293
Classic	5	29	106	56	12	10	218	13	8%	206
Rookie	0	2	13	15	2	0	32	13	12%	34
Youth	0	2	4	6	1	1	14	13	9%	20
		Low P	ower Ov	erlay	Entries	(Inclu	des QRP)		
TB-Wires	3	54	234	173	19	24	507	11	8%	508
Classic	6	79	421	168	43	30	747	10	11%	710
Rookie	1	40	163	88	16	20	328	9	12%	313
Youth	9	19	44	16	2	1	82	8	10%	89

Figure 5. Single Op Overlay Participation Summary

The Single Operator Tribander – Wires (TB-Wires) Overlay is for participants with antennas that meet the following requirements: a single feedline for the single antenna used on 20M / 15M / 10M and single element antennas for 160M, 80M and 40M. Separate receive antennas are not permitted. Participation was up by 22 from 2024. Congratulations to CT3KN for his highest score ever, setting a record in Africa, and winning the High Power Tribander – Wires Overlay for the FOURTH consecutive year. K2SSS placed first in the USA for the second time. TO1P (SP9FIH), winner of the World 10M Low Power category, also took the Low Power Tribander – Wires Overlay top honors.

The Rookie Overlay is intended to attract new contestants licensed for three years or less. The Rookie Overlay saw a growth of 13 participants as compared to 2024. Of the 360 Rookies this year, 75 were in their final year of eligibility, 130 in Year 2, and 155 in Year 1. The High Power Rookie Overlay winner was K1DC in his last year of eligibility; his contest writeup demonstrates the importance of maintaining focus even when conditions are challenging. LU2PWY, in his second year, leveraged a 10M single band entry to win the Rookie Lower Power Overlay.

The Youth Overlay targets operators aged twenty-five or younger. There were 96 Youth Overlay participants, which is down by 13 from 2025. Ages ranged from 10 to 25 with an average of 18. **Congratulations to PJ2T (W4IPC) on setting the High Power Youth Overlay world record**; this was a remote operation by a talented 22 year old. KT5J (W7WLW), age 24, was the High Power Youth Overlay champion in North America, and LY7J, age 23, captured the High Power Overlay in Europe. JG1ZUY

(JJ1AHS) won the Low Power Overlay at age 21. NU1D, age 15, had the highest North American Low Power Youth overlay results and DJ4MX, age 22, was the European champion. Kudos to new Youth Overlay record holders in Oceania – ZL2GUN High Power, YD8BUL Low Power.

Multi-Op Festivities

Figure 6 shows the breakdown of Multi-Op participation by continent. Overall, there were 412 multi-operator stations staffed by 2,133 operators. This is up by 81 logs and 612 operators from 2024, likely because Easter occurred during the 2024 CQ WPX SSB contest, diminishing operator availability. The number of stations participating in the Mult-Single Low Power was the highest ever in CQ WPX SSB and the Multi-Two activity tied the record.

			Cont:	inent				Average per Entry		
2025 Category	AF	AS	EU	NA	ос	SA	A11	Op Time (Hours)	Score Reduction	
Multi-Single HP	2	22	91	24	5	9	153	30	10%	
Multi-Single LP	1	34	61	16	14	10	136	18	11%	
Multi-Two	2	11	31	21	6	4	75	33	9%	
Multi-Multi	2	1	13	10	2	1	29	38	10%	
Multi-Distributed	0	1	10	3	3	2	19	31	11%	

A11
2024
140
100
50
26
15

Figure 6. Multi-Operator Participation Summary

CQ9A dominated the Multi-Single High Power category and narrowly missed setting a new world record. The team at IO6T took first place in the Multi-Single Low Power category. There was a close race between CR3DX and P3WW in the Multi-2 category; both operated the full 48 hours and had nearly identical accuracies. In the end CR3DX had 20 more QSOs and 7 more multipliers and captured first place by 2%; sometimes contesting is a game of inches! The top North American Multi-2 score came from the K1LZ crowd and 9A5Y was right behind resulting in a European win. Despite challenging conditions, CN3A beat their score from 2024 and amassed over 100 million to take the Multi-Multi category. A dream team of operators that included 7 members of the Contest Hall of Fame assembled at K3LR and shattered the North American Multi-Multi record!

Rate, QSO Points, Prefixes and Logging Accuracy - The Best of the Best!

Maximizing a score in the WPX contests requires striking a balance between rate, QSO point production, and multiplier capture. This can be complex, particularly for operations from North America and Europe, where there is a tradeoff between high rates from working local QSOs versus QSO point production resulting from DX contacts. Multiplier production benefits from high rates, but sometimes rates need to be sacrificed in favor of operating on bands open to multiplier rich DX locations. Another typical dilemma is choosing between high rates on the 10M through 20M bands versus high QSO points on 40M and 80M. So, let us look at benchmarks set by stations with the highest rates, QSO point production and multiplier capture.

Starting with a look at rate leaders, we see that the K3LR Mult-Multi team logged an incredible 740 QSOs during the first 60 minutes of the contest which is highest rate ever achieved in

Call	Rate	Call	Rate	Call	Rate
Single Op High	Power	Single Op Low P	ower	Single Op QRP	
8P5A (W2SC)	297	TO1P (SP9FIH)	190	IZ1ANK	102
HC8M (LU9ESD)	275	KP4PUA	180	IZ4AIF	96
D4DX (E77DX)	267	P40L (W6LD)	176	ZY6G (PY6G0E)	92
WH7T (WH7W)	250	XE1CQ	172	E77Y	72
TI7W (N3KS)	243	CU2CO	172	Multi-Distribute	ed
UB8A (UA9BA)	240	9A6A	166	IQ3PN	165
C4W	235	6Y1A (NØGJW@6Y5PW)	166	DR4W	151
HK1T	233	EA8KR	165	RK4W	143
WK5T (N2IC)	225	HI3T	163	ED2R	119
VE5MX	224	AC1U (N1UR)	162	DX1PRO	112
Classic High F	ower	Classic Low Po	wer	Multi-Single High F	ower
WK5T (N2IC)	225	T01Q (F1ULQ)	136	CQ9A	310
CQ3W (DF7EE)	218	КН6СЭЭ	134	WP2Z	249
WS7X	204	VE3DZ	132	SJ2W	204
VP5E (W1DED)	200	RG5A	119	RL3A	202
IO4X (IK4UPB)	192	KP3V	116	PW2F	202
Rookie High P	ower	Rookie Low Pov	ver	Multi-Single Low P	ower
HA8TA	110	LU2PWY	113	CR2M	167
HA6KG	109	4X5IC	108	I06T	138
HA1NG	104	YU4YLB	89	BY7WZ	135
WN6A	99	IU8TVZ	80	AY9W	132
SA2T (SA2TMA)	91	CA6SNT	77	LZ8A	130
Youth High Po	wer	Youth Low Pow	er	Multi-2	
PJ2T (W4IPC)	207	DJ4MX	145	J62K	425
KT5J (W7WLW)	194	YD8BUL	88	P33W	413
LY7J	146	JG1ZUY (JJ1AHS)	80	CR3DX	385
SQ2RAD	132	VE9ENT	70	EI7M	292
YT0C	89	JI1PUC	70	WC6H	291
TB/Wires High	Power	TB/Wires Low Po	ower	Multi-Multi	
CT3KN	201	TO1P (SP9FIH)	190	K3LR	740
ZF2SS	192	6Y1A (NØGJW)	166	CN3A	634
HZ7C (7Z1SJ)	181	EC1DD	155	ND7K	619
UP4L (UN7LZ)	177	RU450	142	LP1H	471
0142 (011722)					

Figure 7. Peak 60 Minute Rates. Stations in Blue made it onto the All-Time Top 20 Rate List for their Categories

CQ WPX SSB. A total of 12 stations made it onto the Top 20 all-time rate list for their categories as shown in blue in Figure 6. QSO rate is important: 61 of the 86 (71%) stations shown in Figure 7 were on the Leader Board for their category or overlay.

Figure 8 demonstrates that QSO point production benefits from operating at locations outside of North America and Europe. There were 10 stations with a points per QSO ratio greater than 3; only one was from Europe and none were from North America. The highest QSO point to QSO ratios were achieved by CN3A (Multi-Multi) and D4DX (Single Op) suggesting that Northern Africa is

			QSO Poin	ts/QS	0 by Stat	ions	Operatin	g 36	or More	Hours	;		
Category	Africa		Asi	Asia		Europe		N. America		Oceania		S. America	
Single Op AB HP	D4DX	3.45	UN9L	2.86	9A73A	2.80	V26K	2.81	KH6ZB	3.13	PJ2T	3.38	
Single Op AB LP	-	-	UN4Q	2.98	TM18Z	2.43	AC1U	2.67	-	-	P40L	3.15	
Single Op AB QRP	-	-	JH7UJU	2.78	LY9A	1.98	-	-	-	-	-	-	
Single Op SB HP	ED8W	2.91	BD7MM	2.22	IB8A	3.09	-	-	-	•	P43A	2.91	
Single Op SB LP	-	-	-	-	IB9T	1.71	-	-	-	-	-	-	
Multi-Single HP	CQ9A	3.34	JA7ZFN	2.86	OL730PLZ	2.68	KL5DX	2.87	VK4A	2.87	PW2F	2.90	
Multi-Single LP	•	-	BYØAC .	2.73	I06T	2.41	K8DP	2.57	-	-	3G2N	2.41	
Multi-Two	CR3DX	3.30	P3CR	3.28	DR4A	2.51	K1LZ	2.71	-	-	CB1C	2.79	
Multi-Multi	CN3A	3.49	-	-	M6T	2.36	K3LR	2.38	NH7T	3.25	LP1H	2.88	
Multi-Distributed	•	-	-	-	HG5A	2.00	WW4LL	2.04	-	-	PV2K	2.90	

Figure 8. QSO Point Production Comparisons

especially conducive to high value QSO point production. There are 40 calls shown in Figure 7, and 29 (72%) of them appear in the top 10 list for their category or overlay.

There were 2,943 valid prefixes identified during log checking and Figure 9 shows that 68% of them were

captured by CN3A, followed by 64% at K3LR. D4DX (E77DX) was the prefix leader among single operators at 51%, followed by RT4F at 50%. Emphasis on multiplier capture might be the surest way to maximize your score: of the 40 calls shown in Figure 8 and 32 (80%) made the Top 10 list for their category or overlay.

	Prefix	es Wo	rked/Tot	al P	refixes (%	efixes (%) for Stations Operating 36 or More Hours						
Category	Afric	a	Asia	1	Europ	e	N. Amer	rica	0cean	ia	S. Amer	rica
Single Op AB HP	D4DX	51%	UPØL	45%	RT4F	50%	8P5A	49%	YB3KM	28%	HC8M	48%
Single Op AB LP	•	-	UN4Q	29%	TM18Z	38%	AC1U	33%	-	-	ZY2B	38%
Single Op AB QRP	•	-	JH7UJU	7%	LY9A	18%	-	•	-	-	-	١
Single Op SB HP	ED8W	38%	BD7MM	29%	IP9A	46%	-	-	-	-	PT5J	49%
Single Op SB LP	•	-	•	•	IB9T	31%	-	-	-	-	-	•
Multi-Single HP	CQ9A	59%	EX9A	41%	RL3A	55%	WP2Z	51%	VK4A	37%	PW2F	49%
Multi-Single LP	-	-	BY7WZ	28%	IO6T	41%	AC6ZM	31%	-	-	3G2N	22%
Multi-Two	CR3DX	63%	P33W	63%	EI7M	61%	K1LZ	59%	-	-	PR1T	45%
Multi-Multi	CN3A	68%	•	•	RU1A	63%	K3LR	64%	NH7T	46%	LP1H	55%
Multi-Distributed	-	-	-	-	IB4X	50%	WW4LL	48%	-	-	PV2K	49%

Figure 9. Prefix Capture Performance Benchmarks

Accuracy is a competitive advantage that often influences the rankings. The average score reductions were 8.8% for single-op and 9.9% for multi-op entries, which are similar to 2024 (8.6% for single op and 10.0% for multi-ops). The top three busted calls were RU1A, OL730PLZ and 8P5A. The most frequent cause of incorrect exchanges

was an error in a single digit of the serial number received. Improvements in accuracy can be achieved by taking a few extra seconds to confirm the call and serial number; it is also important to verify the other station acknowledges your information. Entries with the highest accuracy logs are shown in Figure 10.

Call	QS0s	Call	QS0s	Reduction	Category	Call	QS0s
Best 10, No Re	duction	Best 10, Sir	gle Op,	>1000 QSOs	Best Multi-	-Op by Catego	ry, >5
F4EPP	310	SP9XCN(SP9XL)	1,812	1.1%	Multi-Single HP	S58W	1,98
SA7DXR(SB5X)	249	R7MM(R7NK)	1,104	1.4%	Multi-Single LP	BPØP	632
S000(S01CJ)	249	VE6WP(VE7AWV)	1,895	1.5%	Multi-2	W1FM	837
E72U	222	IV3WMS	1,033	1.6%	Multi-Multi	NH7T	5,97
UA9UR(UA9URI)	217	EU4E	1,983	1.9%	Multi-Distributed	MX4Y	4,14
TM2RH	216	UP5B(UN6LN)	1,579	2.0%	Best Yout	th and Rookie	, >500
KD9V	207	ZZ20(PY2EX)	1,602	2.1%	Youth	NU1D(N2GM)	627
KK9V(KLØD)	204	M1T(M3EMO)	1,208	2.1%	Rookie	DD1SB	593
S52W(S52WD)	200	WP3C	4,678	2.2%			
NC8R(KØPG)	174	KI7WX	3,159	2.4%			

Figure 10. Exemplary Log Accuracy

1.2%

1.9% 5.2%

1.9%

3.2%

Record Busting Scores

There were four world records, and seven continental records set in the 2025 CQ WPX SSB contest as shown in Figure 11. The longest standing record to change was in the Single Operator High Power All Band category from 2013,

which is now owned by D4DX (E77DX). E77Y tried the 80M QRP category for the first time and came away with a new record! DF7EE leveraged experience gained from many operations on Maderia Island to break the world record for the Single Operator Classic Overlay as CQ3W. W4IPC, age 20, operated

		New Ke	cora	Pre	vious kecord	
Category	Region	Call	Score	Call	Score	Year
Single Op High Power All Band	World	D4DX (E77DX)	34,774,025	CN2R	30,683,396	2013
Single Op QRP 80M	World	E77Y	355,282	E740	260,469	2014
Multi - Multi	NA	K3LR	54,745,560	KL7RA	42,051,076	2014
Multi-Single Low Power	EU	I06T	8,228,538	ED1B	6,555,248	2015
	Si	ngle Operator	Overlays			
Classic High Power	World	CQ3W (DF7EE)	15,518,594	P49Y	15,326,958	2024
Youth High Power	World	PJ2T (W4IPC)	16,260,337	KC1XX	15,170,455	2022
Tribander - Wires High Power	AF	CT3KN	16,314,204	CT9L	15,981,472	2008
Classic High Power	EU	IO4X (IK4UPB)	10,832,660	CR6T	9,072,305	2022
Classic Low Power	EU	HGØR (HAØNAR)	2,469,840	9A3B	1,783,944	2023
Youth High Power	OC	ZL2GUN	5,246	YC3CZV	132	2024
Youth Low Power	oc	YD8BUL	1,046,988	YC1LJT	169,081	2022

Figure 11. New World and Continental Records

the PJ2T station remotely and broke the record despite internet problems and a power outage. Congratulations to all!

Log Checking Statistics and Disciplinary Actions

The CQ WPX Contest Committee was able to post the raw scores less than 48 hours after the log submittal deadline thanks to the timely actions of participants. The log checking process was rigorous: 91.2% of the reported QSOs were checked against another log. Of the checked QSOs, 95.4% were found to be correct; 2.5% had incorrect received serial numbers; 1.6% had incorrect received calls, and 0.5% were not found in the other stations log. The log checking process also benefitted from 389 checklogs.

A total of 83 concerns were investigated by the Committee. These included excessive power, excessive bandwidth, self-spotting, use of QSO alerting assistance in the Single Operator CLASSIC Overlay, QSOs on unauthorized frequencies and excessive unverifiable QSOs. The Committee levied 70 disciplinary actions including disqualifications (10), warnings (44) and reclassifications (16). Participants are reminded that self-spotting is not permitted in CQ WPX, operators must be attentive to band edges, particularly on 15M and 20M, and contest activity is captured via SDR recordings.

Closing

It is my pleasure to acknowledge all the volunteers supporting the 2025 CQ WPX SSB contest. They include: F6BEE, G6NHU, K1AR, K1DG, K1EA, K3WW, K5ZD, K8AZ, KM3T, KR2Q, LA6VQ, N2NT, OH6LI, S50A, W0YK, and Y03JR, along with new team members K0EJ, N3QE and PA3AAV. This is an amazing crowd, and their contributions benefit all of us in the radiosport community.

I would like to close by thanking the over 10,000 operators that rode the roller coaster to make this one of the best CQ WPX SSB contests ever! There were some incredible accomplishments, despite the poor conditions on Day 1. It is likely that we will still have the high bands next year, so strap in for another ride and we hope to see you in 2026!

Youth, Mentoring and Family Operating Stories

VE9FR/VE9ENT CQWPX SSB 2025 Expedition. Father and Son DXpedition

With a few contests under their belt including participating as NM1JY (@K1RX) mult-op in the 2024 SSB WPX, KC1RWR/VE9FR (Kirby) and 14 year-old son KC1SDD/VE9ENT (Devon) they got their VE9 licenses and packed up their station and headed to New Brunswick. Putting up antennas at the family home in VE9, they shared operating time, and in the process, Devon set a new VE-land Youth record. Here is their story:

My name is Devon Francis (KC1SDD/VE9ENT).

My Ham Radio journey started in 2022 when I was eleven and I watched my dad study for his Technician license. I love physics, so it seemed interesting to me. I received my license on Thanksgiving Day that year and my father and I took our General together in 2023 and our Extras in 2024. As Canadian citizens, we had to get

Canadian callsigns to operate up north, so we acquired our Basic with Honors privileges in the summer of 2024. The region where my Canadian family lives, New Brunswick, doesn't have a ton of Hams, so we both realized that this was a prime place from which to operate for CQWPX.

We knew that this was going to be more like POTA than setting up a new base station because this would be a non-permanent setup, and we had only a few days to prepare. We brought our FT-DX10, as well as our Palstar AT2KD manual tuner and a 40m doublet. We borrowed a HexBeam from a friend, and we brought a Windows laptop for logging.

We arrived at my grandmother's house on the Thursday before the contest and immediately began setting up. We started putting the HexBeam together in the garage, but it soon became obvious that it was a lot larger than we

had remembered. We then finished setting it up outside. In a snow squall. This was when I discovered my first, and greatest, mistake - I had forgotten to bring gloves. Luckily, I keep a pair stocked in my winter coats, but it was the dollar store type that doesn't afford much protection from the cold, and, if you touch something wet, like a HexBeam in a snow squall, becomes useless. Gloves aside, the setup went well. The snow squall came in and out, and we had the antenna guyed and working by the evening. The next day a cousin came over and used a bow to shoot lines into the trees for our doublet. The swoosh of his arrows was impressive! We were set up and tested in time for the contest to start at 9 pm local time on Friday.

On that first evening of the contest, I used a strategy that I have used before to great effect. I started calling CQ about fifteen minutes before as if I was doing casual DX and contacted a few people who were testing out their rigs. This meant that all I had to do when 9:00 came was to switch to CQ contest and I didn't have to worry about fighting for a frequency. I stayed up until about 11:30 local time (in case you are wondering, that is past my bedtime) with about 100 Q's.

That Saturday my dad got up early to work Europe while I slept in and ate a delicious breakfast. When I headed down to the shack at around 7:45 local, I made about 60 more Q's before we left to see some family friends. I hopped back on that afternoon and evening and got about 100 more QSO's, although the going was a little rough.

On Sunday morning I put a few more contacts in and then we went to church. After we got back, I operated a little bit more and then broke for lunch. When I got back on the radio, I realized that I had 350 contacts. Dad took a turn, and then I got on. At 4:43 pm local time, I was doodling around on the CQWPX website, I will admit to being a little bit bored, but suddenly I saw something. I had broken the Canadian Youth Low Power record. It wasn't by a huge margin though, and I still had score reductions to worry about. I pushed with this goal, and my dad kindly let me use the radio for the rest of the contest. In

that last hour I had several fellow members of the Yankee Clipper Contest Club contact me, a huge morale boost. I finished the contest with a raw score of 372,465 points. I think I broke that record.

On our drive up to Canada, my dad and I had listened to a couple of podcasts that recommended working Europe. We never really had an opening across the pond though, so I decided to do the best I could with the US. Being in Canada meant that US contacts were worth two points as opposed to the one point they would be if we were at our home station, so it was still very profitable.

It was a great experience, on all levels. It was a fantastic chance to spend time with my father on the long drives and the even longer CQs to the endless void of space and time. Last time I did a contest like this was from my mentor, K1RX's station. Both were fun experiences, but they were very different. At K1RX's, I had access to a world-class station with full legal limit amps, a truly impressive antenna array, and an SO2R setup. (Not that I am any good at SO2R yet....) Also having your mentor right beside you makes a world of difference. While I didn't have a superstation or a mentor in Canada, I had a highly desirable callsign and a plethora of my grandmother's homemade desserts. When K1RX contacted me over the air, it was a morale boost to keep me going.

The CQWPX contest is probably my favorite contest. The emphasis on talking to so many different areas of the world is fun, and the extreme number of multipliers means there is always someone new and exciting to talk to. It is also very similar to the contests I have done at my mentor's station, all of which have been great learning experiences and a fantastic time to reach the world.

Devon, VE9ENT (KC1SDD), working the pile

Kirby/Dad's perspective:

Devon (KC1SDD/VE9ENT) and I worked this contest for the first time last year from K1RX's station. The premise of "everyone works everyone" makes for my favorite type of contest. Last summer we earned our Canadian callsigns. That set us to thinking that with VE9 being a rare multiplier for US and EU stations, a DX expedition to my mother's house in New Brunswick might be fun. My mother is a magnificent cook, so seeing family and good eating would make the trip worthwhile, regardless of final scores.

We needed to set up a station from scratch, with little time to prepare. The plan that was to put up a 40M dipole and borrowed Buddihex Hexbeam. Setup went well, despite snow squalls making fingers clumsy, and the strong wind, but not too strong for the Hexbeam. My cousin is a professional hunting guide, and a few compound bow shots later we had lines in spruce and poplar trees. We used a LOG (loop on the ground) for our Airspy SDR, a great addition which gives 360 band visibility with no need to QSY the radio. The two antennas went into our Palstar manual tuner, which also acted as a switch. That went into a FTDX10, and we were ready to warm things up. Casual contacts Thursday showed us that everything worked.

Devon started Friday night with a decent run or two, and we finished up for the night. The plan for me was based on advice from the "Contest Crew", W1DED's excellent WPX prep podcast. With a time zone (+1hour for AST, times in this report are EST) and grey line ahead of EST, and a straight shot to the EU, I got up 4:00AM EST with the intention of getting some runs Saturday morning. Three hours later, I was incredibly discouraged with only 4 Q's to show for the effort. Outside of the UK, I could not make myself heard or hear much of anything. My grand strategy to work the EU before people in NA were having their scrambled eggs was a dismal failure. The good thing is my mother made cinnamon rolls and fresh bread. Meals, check.

Devon's shift at 8am showed gradual improvement in conditions, and he began adding to his gains from the night before. We took some time to visit old family friends, and then I was back on by 12:15 EST. Again, the EU was a complete disappointment. I spun the beam to the US, and then the logjam broke. It should have occurred to me before, but operating from Canada meant the US was worth 2 points per Q, and there were plenty of mults. Ten meters opened wide, and I fought the sometimes-brutal QRM until 2pm EST, when QSB became widespread. Five hours of operating, and 123 QSO's. Not the rate I wanted, but at least something to show for it. Devon took the 2-4pm shift while I ate more and enjoyed a beautiful walk in the woods. When I sat down at 4:00pm, I got immediate reports from the EU on 15M that my signal was 10 over. Taking advantage of the increased bandwidth on 15M that comes with being Canadian, I hoped for a solid run. After 20mins or so, I switched to S&P, and actually got some good rate that way. Would I ever get a good run?

After a delicious supper (note the theme), Devon decided to have some time with the family, So I got back on at 7:00pm EST. Then it happened - between the EU and US, 20M gave me a solid run until 10pm. The majority of my QSO's came during this window. I signed off at 10pm, with the hopes of a better EU opening the next morning. I slept in until 5:15am, again hoping for 15m to EU. I could hear some of them, but they couldn't hear me. Switching to the US on 40M on the dipole, I

was getting reports from New England of being 10 over! I worked K1RX (operating as NM1JY). Not a long conversation, but when you're out there wondering if you've done things wrong, hearing advice and encouragement from a mentor on the air is an incredible morale booster. It was great to work WO1N during this time as well, a great shot in the arm to hear a friendly voice!

Devon again took the 8-10am shift. We attended the church where I grew up, and I got to catch up with some old friends. I worked for 5 minutes when we got back, and nabbed Australia. I asked Devon if he wanted the Mult, and he slid in. That was the end of the contest for me, as Devon had found a record he wanted to smash, and smash hard. He fought like a tiger until the end of the contest, beating his old man's score to smithereens.

Takeaways? Well, it's hard to describe how discouraged I felt Saturday morning. Was it me? Was it the equipment? I thought back to the Slack channel K5ZD had set up for us when our team was running N1W in January. A "back channel" to YCCC friends, to ask about propagation, or for some advice, would have provided the encouragement I sorely needed. I was following the expert advice, and it wasn't working. Keep in mind there's a reason that I'm in the 'Rookie" category - this is still new to me. The second takeaway was that operating this contest with a VE9 prefix was great. 4 points for a US QSO on 40m? Yes, please. Finally: can't wait to "dig in" again next year!

Devon, VE9ENT (KC1SDD), and his Dad, Kirby, VE9FR (KC1RWR)

AT3K MULTI-TWO

For VU2RDQ Rohit, it was his first contest entry though he was part of IOTA and DXpedition(VU7LD) in the past decade. He thoroughly enjoyed making contacts on the 10m band which seemed to open most of the time till midnight. There was college student interactions organized by NITK's SEARCH program (Owner of the Amateur Radio station where we operate the station AT3K). Many students were given a window to high speed HF exchanges by showing spectrum of Flex and ICOM 7610 radios. An intern team presented portable vertical antenna they made for 10m. More than 50 students and NCC (National Cadet Corp who have their firing practice range next to our antenna farm:)) cadets visited the site during the contest and got information on multiple projects running at the SEARCH site. Overall, it was a fruitful event for both local ham contesters and institute.

J62K MULTI-TWO

This year we welcomed two youth operators to the J62K team in St. Lucia – Violetta KN2P and Leon DL3ON. The following are their comments on the experience:

First we would like to thank the station owners and operators for this incredible opportunity to work along with and learn from this outstanding team. The knowledge and skills that were shared with us were highly valuable. The memories that we made this week we will for sure remember for the rest of our lifetime. Thank you for welcoming us into the J62K family! Of course, the propagation was not only incredibly good but also nothing like either of us have experienced ever before. We were fortunate enough to witness an unexpected opening on 10m to VK/ZL in the middle of the night. And although we barely made any 80m and 160m QSOs we could make that up by the astonishing high band pileups. The station setup was ideal, with the pool only a few steps away from the operator's chair. Contest, swim, sleep, repeat:) We are

incredibly thankful and honored that we were chosen for this great opportunity and hope that future youth coming down here will share the same great experiences!

K4SBZ MULTI-TWO

I held an Open House for hams from the Tallahassee, FL area. Nine hams attended with contesting experience ranging from skilled to none. Four of the hams got on the air for the contest. I had three stations set up: Flex 8600 with an 80 M OCF dipole Flex 6600 with a different 80 M OCF dipole, 90 degrees from the other ICOM IC-7300 with a 40 M EFHW antenna. A considerable amount of time was spent with eyeball QSOs and mentoring new hams. All but one needed to learn about Software Defined Radios (SDR) and operating the Flex SmartSDR. A couple were going to get on the air from their own stations once they got back home. We couldn't rack up big numbers because of all of our down time, but we did gain a huge level of experience in contesting, operating Flex SDR radios, operating an IC-7300, and general amateur radio knowledge. I think we all had fun.

K8DP MULTI-SINGLE LOW POWER

This was the first time that three generations of our family, John K8YSE, myself Doug K8DP, and Grace K8LG—came together as a team to compete in a contest. Grace operated the station remotely from her college dorm room as she is currently immersed in her spring term at university and couldn't be with us in person. The band conditions did not disappoint! All in all, we are pleased with our effort, and we had a great time participating together as a family

N1RM MULTI-SINGLE LOW POWER

Another fun multi-single at N1RM! I had some other obligations this weekend so KM6VRX and WA3RGH filled in for me. Actually, I spent lots of time with my feet up watching "Baron BIC" KM6VRX outlast all of us in the chair. We are

getting him into PVRC forthwith!! The bands just kept on giving. Low power impeded our S&P rates a fair amount, and we only ran when the bands weren't too insane (which wasn't very often), but Bryce proved the old adage once again that it's all about BIC! Thanks for all the Q's!

N4BRF MULTI-SINGLE HIGH POWER

This entry is for the Boca Raton ARA "Intro to Contesting- Part 3" students who participated for 3 hours in CQ WPX SSB. I have been very fortunate to mentor these fine ops who are learning the ropes of contesting so nice to see their enthusiasm! Congratulations Al, Steve and Harold. Keep up the good work. 73, Chris, NX4N

OL5G MULTI-TWO

This contest was quite unique for my station (OL5Y) - we hosted a group of young or beginner HAMs to give them a chance to try a big HF contest from a station with decent equipment. We chose the Multi-Two category and OL5G contest call. The main team consisted of male and female operators from 8 to 21 years old, with their senior supervisors operating for several hours of the contest. A total of 15 operators took turns, and for most of them it was their first experience with an HF contest. The whole event was sponsored by the Czech Radio Club headed by its secretary Liba OK1LYL.

P3CR MULTI-TWO

Great teamwork with youngsters, of which 4 of them (total 6 ops) got licenses roughly a year ago only. For them this was the first major contest. I wish propagation was better. Overall, everybody had good fun and looking forward to the next one. Thanks everyone for calling us.

S51A MULTI-TWO

What to say? We love this game! Among the operators, there are of course also young operators in terms of age (15 & 16), as well as in

terms of years of experience - license year - 2022, 2023 and 2024. Congrats to them. And of course, all honor and congratulations to the experienced operators who teach us how to be better operators from contest to contest. Thank you! We had fun!

WA3EKL MULTI-MULTI

We had the privilege of giving one of our newest crew members, Zac, KJ5BIN, a lot of BIC time and more familiarization with the station. He did an excellent job running stations.

WA60YC MULTI-SINGLE LOW POWER

This was an ad-HOC WPX SSB demonstration for the Amateur Radio Club of Alameda (ARCA) at the Oakland Yacht Club (in Alameda) by WQ6X, the club president. We ran an ICOM 7300 off of a marine battery into a horizontal J-Pole antenna atop the Yacht Club's 3-Story high building. RFI from hundreds of boats in the harbor OBLITERATED the bands, relegating us to working only the strongest stations and calling CQ only once. Nevertheless, the group got exposure to Radiosport Pandemonium (WPX-Style) and the J-Pole was given an amazing performance test.

2025 CQ WPX SSB Photo Gallery

4I1EAY at DX1PRO. Multi-Distributed

9A4V. Single Operator, High Power, 40M

9A5Y. Multi-Two. Operators: S55OO, 9A9EE and 9A5DX

CE2EH QRP station from a bicycle! Single Op, QRP, 10M

CQ9A. Multi-Single, High Power. Operators: I4UFH, SQ9ORQ, CT9ACD, IZ4DPV, EW8Y, LY4A and IK1HUS

DV1K Family Affair. Multi-Single, Low Power

DW2KED. Single Operator, All Band, Low Power

ED1R. Multi-Single, High Power.
Operators: EA1TL, EC1KR, EB4A, Valentina (dog), DH1TW and DD1MAT

ED2X. Single Op, High Power, 20M

ED8W (EA1BP), Single Operator, High Power, 20M

ED8W (EA1BP), Antennas

EE3L. Multi Single, Low Power

EX9A. Multi-Single, High Power. Operators: EX0DX, EX2M, EX7CQ, EX8MLE, I2VXJ and RT2O

HC8M (LU9ESD). Single Op, All Band, High Power

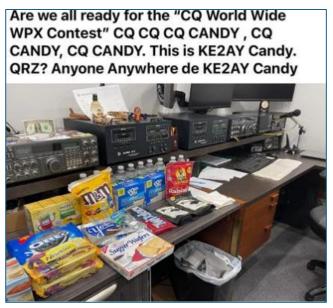
HC8M (LU9ESD) with Giant Galapagos Turtle!

HG5A. Multi-Distributed

IB8A (I8QLS). Single Operator, High Power, 40M

IK4MTF. Single Operator, Low Power, All Band + TB-Wires Overlay

IN3EYI. Multi-Single, High Power


IO5M (IZ5ICH). Single Operator, High Power, All Band

109A. Multi Single, High Power

K9CT. Multi-Two. Operators: K9CT, WT2P, K2DRH; N9LQ and AB9YC

KE2AY. Single Operator, All Band, High Power

KI1P (news van operation), Single Operator, Low Power, All Band + TB-Wires Overlay

OM3KUK. Multi-Single, Low Power

OZ2ATS. Single Operator, High Power, All Band

SJ2W. Multi-Single, High Power. Operators: UR5ECW, SM2WMV, SM2LIY and SM2MTR

TA5O. Single Operator, Low Power, All Band

TI1F (TI2RF). Single Operator, Low Power, 10M

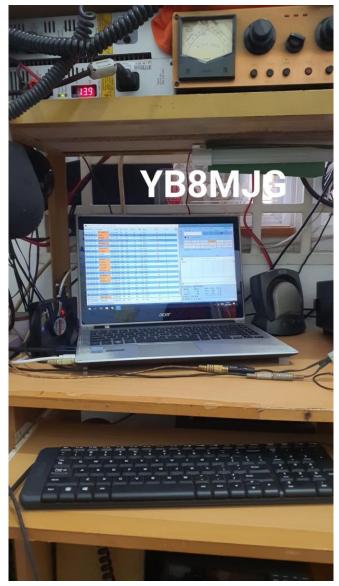
TI1F (TI2RF). Tower and Antennas

V26K (AA3B). Single Operator, All Band, High Power

VC7A. Multi-Single, High Power

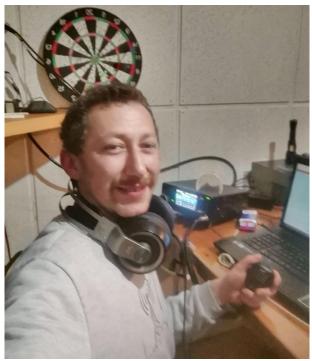
VK4A (N0OJ and VK4PR). Multi Single, High Power

W2KYM. Single Op, Low Power, All Band

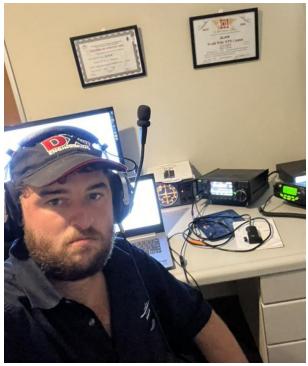

WP3C. Single Operator, High Power, All Band

WM7A, Operator W7VO. Multi-Single, High Power

WP3C. Towers and Antennas


YB8MJG. Single Operator, High Power, All Band + Classic Overlay

YD8CLU. Single Operator, Low Power, All Band


YL400L, operator YL3JA. Multi-Two. Celebrating 400 years of Liepaja City

YT3ABW. Single Operator, Low Power, All Band

YU3AWA at the ED8Y Multi-Multi

ZL2GUN. Single Operator, High Power, 10M + Youth Overlay

Top Scores - WORLD

OTNOT E	ODEDAMOD	EW1M	15,824	YO8DHA	15,486
	OPERATOR	S030	12,960	OK1AGE	9,522
	POWER		,	YU1P	7,198
All	Band	LOW	POWER	YO8RZJ	6,435
D4DX (E77DX)	34,774,025	All	l Band	QRP	
HC8M (LU9ESD) 8P5A (W2SC)	25,371,888 23,679,546	P40L (W6LD)	11,057,235	All Band	3
HK1T	21,181,578	ZY2B (PY2UD)	7,830,704		
UN9L	18,171,771	AC1U (N1UR) TM18Z (F4DSK)	5,983,208 5,720,157	LY9A ZY6G (PY6GOE)	939,906 461,912
V26K (AA3B)	18,068,193	UN4Q	5,038,572	KA8SMA	295,740
WP3C	17,451,575	6Y1A (NOGJW @6Y	5PW) 4,276,476	GI7JYK (MI5JYK)	248,430
CT3KN PJ2T (W4IPC)	16,314,204 16,260,337	XM2Z (VA2CZ)	3,558,160	MW7FON	240,075
UPOL (UN9LW)	16,013,200	SP9XCN PJ7EE	3,462,688 3,362,590	WP4KEY PA3EOU	236,708 225,126
		5K4X (KC1XX)	3,147,030	W6QU (W8QZA)	192,786
	MHz	,	, , , , , , , , , , , , , , , , , , , ,	PY2PLL	191,952
PT5J (PP5JR) CW5W (PT2IC)	17,390,160 12,896,920		3 MHz	JH7UJU	169,470
PV2G (PT2FM)	10,640,610	TO1P (SP9FIH)	7,403,550	28 MHz	
LR1E (LW6DG)	6,894,478	EA8KR LU2DUV	6,058,428 3,951,408	DQ2C (DL2SAX)	233,740
ES7A (ES7GM)	6,555,838	TO1Q (F1ULQ)	3,481,950	4K3ZX	149,853
KW7MM	6,520,621	WP4TZ	2,937,816	PY2BN	148,072
TM1C (F4ARU) AZ1D (LU4DJB)	6,504,064 5,931,680	PY7RP	2,448,756	WA3LXD	133,809
T77CX	5,170,584	PY2HT YT8A	2,087,925 2,084,099	K7SS YP8A	124,992 116,812
OL9Z (OK2PVF)	5,084,328	UP7L (UN6LN)	1,754,052	ES6RW	99,715
01		LU2PWY	1,748,722	TI3GB	97,344
	MHz			IZ2KPE	91,256
P43A SN3A (SO9UM)	11,049,164 9,321,984		L MHz	SV1NK	76,380
SN2M (SP2XF)	9,173,088	PZ5TW (PY8WW) 4Z4AK	4,806,835 2,896,256	21 MHz	
DF7A	8,919,162	IT9STX	2,363,606	HG1S (HA1DAE)	414,634
IP9A (IU3BTY)	8,310,177	ME5W (MOHMJ)	1,963,185	K5RX	274,626
P35A (5B4AQN)	7,941,648 7,351,848	J42A (SV2AEL)	1,102,896	LY2OU	214,148
ES9C (OH8CA) CR6T (CT1ESV)	6,849,784	R9YU	1,016,880	JA6GCE	165,912
OG8M (OH8MCT)	5,308,528	UT3EV KP4PUA	944,878 816,000	7N4WPY YU1NR	70,416 66,364
KU2M	5,226,486	HI6M	609,178	SP4LO	47,804
1.4	M	EA4EUI	568,232	YO5DDD	42,450
ED8W (EA1BP)	MHz 9,161,383	-	4	CT2GSN	32,265
YT3X	7,483,352		4 MHz	D030I	32,076
S50K	6,932,090	TI1K (TI5CDA) IB9T (IT9BLB)	3,087,771 2,518,867	14 MHz	
OH8X (OH6UM)	6,546,800	IZ4REF	1,483,406	S51Z	235,056
HG5E (HA1AH) S56M	6,384,382	YU5M	1,313,606	IZ1ANK	218,163
YT1A	6,186,986 5,851,608	YV4EK	889,555	IZ3NVR	108,400
A42K (A41CK)	5,830,215	RZ3Z HZ1BW	870,750 849,590	YU1LM SP5ENG	87,108 49,660
RA9Y	5,147,008	M5L (M5LMG)	823,554	2E0KCD	38,646
EB1DJ	3,703,392	YT7BA	783,645	CM8CF	22,950
7	MHz	PY2NY	783,104	MM0XDG	17,901
IB8A (I8OLS)	7,707,392	7	MHz	S59ZZ	17,082
4L50	6,336,000	Z32TO	872,515	YO4BEX	13,230
9A4V (9A2VR)	6,334,720	YO6XK	507,528	7 MHz	
S51YI	5,022,606 3,462,921	DL4VAI	369,248	IZ4AIF	208,208
TM8A (F8DVD) N800	2,065,868	SQ8MZW	345,102	OK6OK	170,624
ES5NY	1,871,625	E71T PH9B	270,732 270,600	PA9M SP4NKJ	84,150 53,938
HA2KMR	1,859,132	YP3A (YO3ZHR)	236,640	4L5P	41,194
S570	1,757,144	UA9R	229,899	YB9YBB	24,648
YT5DEY	1,152,834	CN8SG	225,530	S055K	18,528
3.7	7 MHz	HI3SD	213,824	YG3ASG DV1TBT	12,935 9,408
HA1TJ	1,451,919	3.	7 MHz	YD3ASV	8,400
SQ9Y (IT9RGY)	1,388,168	HG6K (HA6AK)	617,344		-,
SQ2PHG	1,364,808	OU8A (5P00)	406,164	3.7 MHz	
DM3W (DM6DX) SN9B (SQ9OB)	946,908 892,281	LY7X (LY3DA)	397,341	E77Y	355,282
IZ4NIC	830,060	DJ9DJ SN4EE (SP4AWE)	270,400 252,840	OL4W UR5FEO	162,852 84,258
9A5TW	545,034	OK2BFN	248,805	SP7M (SP5EWX)	56,210
9A2EU	240,867	S55BA	188,752	SQ8NGV	40,200
W3BGN ED4W (EA4DE)	214,768 142,130	OK1AY	147,150	SP6NIV	19,285
ED4W (EA4DE)	142,130	OK7R	122,605	HB9RN (HB9FWB)	11,592
1.8	8 MHz	OM6TX	113,360	UROFF F1DHX	6,930 6,670
LYOUKR (LY7M)	334,334	1.	8 MHz	SV1DZB	1,100
YL3FT	238,545	OK4R (OK6RP)	155,709		
S56X OR7K	227,292 93,480	HF7A	120,012	1.8 MHz	
WF2W	32,918	E79D DR6T (DL3RAR)	82,058 41,538	SQ9U YO8WW	31,301 2,660
YT5T	22,321	S50SL	33,915	108WW 4L4NW	2,660 600
SP6JZL	18,424	YU1LD	30,096	E77SA	80

MU	JLTI-OP	ROOKII	3	YOUTH	I
	-TRANSMITTER	HIGH POW		HIGH PO	
	GH POWER	K1DC	2,031,114	PJ2T (W4IPC)	16,260,337
CQ9A	52,015,086	HA1NG	1,223,511	KT5J (W7WLW @K5TR)	6,429,466
WP2Z	25,637,080	WN 6A	1,214,290	LY7J	5,507,931
RL3A	23,341,604	HA6KG HA8TA	1,158,912 1,128,125	W7MTH SQ2RAD	268,185 134,211
SJ2W	18,675,318	KFOSRY	638,389	9A/VA3LPZ	130,248
ED1R OL730PLZ	18,057,835	YC1RGK	501,228	YTOC	111,930
PW2F	17,642,121 16,920,176	ISOJRL	298,773	A41DV	95,914
S53M	15,999,558	DL1CSB	295,040	KQ2X	59,274
DP9A	12,812,200	K1TKT	284,048	NC8R	50,832
OK5Z	12,480,165	LOW POW	ER	LOW POW	ER
τ.0	W POWER	LU2PWY	1,748,722	JG1ZUY (JJ1AHS)	1,975,068
IO6T		4X5IC	1,012,389	JI1PUC	1,630,960
ED70	8,228,538 6,398,271	YU4YLB	860,283	DJ4MX	1,349,985
LY4L	5,803,884	9A5KW	805,008	YD8BUL	1,046,988
CR2M	4,659,424	CA6SNT	795,468	NU1D	601,378
AC6ZM	3,719,193	DS1UPY	485,694	SP3GTP	432,400
BY7WZ	3,312,960	HAOSA DD1SB	428,164 403,312	DA6VW VE9ENT	373,164 331,436
KA4RRU	3,248,696	KE2CWJ	344,761	KISAN	227,126
BY0AC	2,388,130	W9USO	330,012	M7OJA	223,236
BY8GA N1RM	2,387,799 2,213,235				
NIRM	2,213,233	CLASSI	С		
MU	JLTI-OP	HIGH POW	IER		
тжо-т	RANSMITTER	CQ3W (DF7EE)	14,825,690		
CR3DX	67,499,100	IO4X (IK4UPB)	10,832,660		
P33W	66,040,219	E70T	8,920,219		
EI7M	38,213,655	UA9MA EE8E (EA8BW)	7,892,877 7,699,735		
K1LZ	37,800,594	WK5T (N2IC)	6,921,717		
9A5Y	33,735,177	LR1E (LW6DG)	6,894,478		
SP8R	32,648,520	VP5E (W1DED)	6,420,915		
II2S J62K	32,033,183 31,662,050	IK3UNA	4,903,423		
OM7M	31,556,640	9N7AA	4,549,788		
P3CR	27,355,040	LOW POW	FD		
		TO1Q (F1ULQ)	2,916,817		
M	JLTI-OP	HGOR (HAONAR)	2,469,840		
MULTI-	TRANSMITTER	NN7CW	2,304,138		
CN3A	101,507,538	VE3DZ	2,049,375		
K3LR	54,745,560	RG5A	1,794,368		
RU1A	44,183,370	CT3IQ PU2UAF	1,276,076 896,858		
LZ9W M6T	42,739,520 41,667,480	YV4EK	889,555		
UA7K	36,319,632	KWOA	869,176		
YT5A	34,057,698	EI4GNB	856 , 960		
LP1H	30,324,090				
ND7K	30,233,104	TRIBANDER/	WIRES		
DP7D	28,484,545	HIGH POW			
МТ	JLTI-OP	CT3KN	16,314,204		
		UP4L (UN7LZ)	11,384,788		
	DISTRIBUTED	K2SSS P35A (5B4AQN)	8,283,121 7,941,648		
PV2K	20,959,120	WM9C	7,289,160		
WW4LL IB4X	16,072,701 16,039,170	EA1L	6,990,230		
HG5A	10,400,676	ZZ2T (PY2MNL)	6,536,160		
MX4Y	9,552,015	KE2AY	6,281,345		
KR7D	6,256,095	AH2O	5,637,500		
DR4W	3,915,270	MM9I (GM0OPS)	4,756,290		
ED2R	1,908,283	LOW POW	ER		
IQ3PN 9M2J	1,423,240 1,410,732	TO1P (SP9FIH)	7,403,550		
7	1,110,702	6Y1A (NOGJW @6Y5PW)	4,276,476		
		SP9XCN	3,462,688		
		PJ7EE	3,362,590		
		WJ1U IZ4REF	1,768,968 1,483,406		
		PY5FO	1,386,882		
		R7MM	1,346,268		
		W7CXX (WA7LNW)	1,334,680		
		WB8TLI	1,310,946		